Skip to main content
Log in

Aggregation behavior of star-shaped fluoropolymers containing polyhedral oligomeric silsesquioxane (POSS) at the air–water interface

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Aggregation behavior of three star-shaped fluoropolymers containing polyhedral oligomeric silsesquioxane (POSS) and different monomers poly(methyl methacrylate) (PMMA), poly(trifluoroethyl methacrylate) (PTFEMA) and poly[poly(ethylene glycol)methyl ether methacrylate] (PMPEGMA), POSS-(PMMA-b-PTFEMA)8, POSS-(PTFEMA-b-PMMA)8, and POSS-(PTFEMA-b-PMPEGMA)8) was investigated at the air–water interface. The interfacial rheology and surface morphology were studied through surface pressure and compression modulus measurements, hysteresis, relaxation, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The surface pressure–mean molecular area (Π-MMA) isotherms exhibited four regions, and it was found that the pseudoplateau observed corresponds to a “pancake-to-brush” transition. The compression modulus isotherms showed two peak values which were related to the phase transition of the monolayer. The hysteresis behaviors were compared in two different regions during the compression–expansion process. In addition, the relaxation of the monolayer was discussed using the step compression method. The relaxation process was proposed that related to the adsorption–desorption exchange of molecules and polymer segments on the surface (fast relaxation process) and the reconformation of the adsorbed macromolecules inside the adsorption layer (slow relaxation process). Furthermore, the Langmuir–Blodgett (LB) films prepared at different surface pressures from the three copolymers were scanned by AFM and a variety of morphologies were observed. Finally, the structure evolutions for the three star-shaped copolymers that aggregate at the air–water interface were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Brzozowska A, Paczesny J, Parzuchowski P, Kusznerczuk M, Nikiforov K, Rokicki G, Gregorowicz J (2014) Hyperbranched polyesters termienated with alkyl chains of different length at the air/water interface and on solid substrates. Macromolecules 47(15):5256–5268. doi:10.1021/Ma500941c

    Article  CAS  Google Scholar 

  2. Kim H-J, Deng J, Hoyt Lalli J, Riffle JS, Viers BD, Esker AR (2005) Blends of amphiphilic trisilanolisobutyl-POSS and phosphine oxide substituted poly(dimethylsiloxane) at the air/water interface. Langmuir 21(5):1908–1916. doi:10.1021/la0475674

    Article  CAS  Google Scholar 

  3. Felipe MJ, Estillore N, Pernites RB, Nguyen T, Ponnapati R, Advincula RC (2011) Interfacial behavior of OEG–linear dendron monolayers: aggregation, nanostructuring, and electropolymerizability. Langmuir 27(15):9327–9336. doi:10.1021/la200916n

    Article  CAS  Google Scholar 

  4. Lenis J, Razavi S, Cao KD, Lin B, Lee KYC, Tu RS, Kretzschmar I (2015) Mechanical stability of polystyrene and janus particle monolayers at the air/water interface. J Am Chem Soc 137(49):15370–15373. doi:10.1021/jacs.5b10183

    Article  CAS  Google Scholar 

  5. Kim HC, Lee H, Khetan J, Won Y-Y (2015) Surface mechanical and rheological behaviors of biocompatible poly((d,l-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA–PEG) and poly((d,l-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL–PEG) block copolymers at the air–water interface. Langmuir 31(51):13821–13833. doi:10.1021/acs.langmuir.5b03622

    Article  CAS  Google Scholar 

  6. Claro PCD, Coustet ME, Diaz C, Maza E, Cortizo MS, Requejo FG, Pietrasanta LI, Ceolin M, Azzaroni O (2013) Self-assembly of PBzMA-b-PDMAEMA diblock copolymer films at the air-water interface and deposition on solid substrates via Langmuir-Blodgett transfer. Soft Matter 9(45):10899–10912. doi:10.1039/c3sm52336e

    Article  CAS  Google Scholar 

  7. Joncheray TJ, Bernard SA, Matmour R, Lepoittevin B, El-Khouri RJ, Taton D, Gnanou Y, Duran RS (2007) Polystyrene-b-poly(tert-butyl acrylate) and polystyrene-b-poly(acrylic acid) dendrimer-like copolymers: two-dimensional self-assembly at the air−water interface. Langmuir 23(5):2531–2538. doi:10.1021/la062924r

    Article  CAS  Google Scholar 

  8. Cheyne RB, Moffitt MG (2006) Self-assembly of polystyrene-block-poly(ethylene oxide) copolymers at the air−water interface: is dewetting the genesis of surface aggregate formation? Langmuir 22(20):8387–8396. doi:10.1021/la061953z

    Article  CAS  Google Scholar 

  9. Logan JL, Masse P, Gnanou Y, Taton D, Duran RS (2005) Polystyrene-block-poly(ethylene oxide) stars as surface films at the air/water interface. Langmuir 21(16):7380–7389. doi:10.1021/la050787c

    Article  CAS  Google Scholar 

  10. Li Z, Ma X, Zang D, Guan X, Zhu L, Liu J, Chen F (2015) Interfacial rheology and aggregation behaviour of amphiphilic CBABC-type pentablock copolymers at the air-water interface: effects of block ratio and chain length. RSC Adv 5(101):82869–82878. doi:10.1039/c5ra08109b

    Article  CAS  Google Scholar 

  11. Wang X, Ma X, Zang D (2013) Aggregation behavior of polystyrene-b-poly(acrylic acid) at the air-water interface. Soft Matter 9(2):443–453

    Article  CAS  Google Scholar 

  12. Perepichka II, Borozenko K, Badia A, Bazuin CG (2011) Pressure-induced order transition in nanodot-forming diblock copolymers at the air/water interface. J Am Chem Soc 133(49):19702–19705. doi:10.1021/ja209502d

    Article  CAS  Google Scholar 

  13. Kraska M, Gallei M, Stühn B, Rehahn M (2013) Pressure induced structure formation in Langmuir monolayers of amphiphilic metallocene diblock copolymers. Langmuir 29(26):8284–8291

    Article  CAS  Google Scholar 

  14. Chen YJ, Liu T, Xu GY, Zhang J, Zhai XR, Yuan J, Tan YB (2015) Aggregation behavior of X-shaped branched block copolymers at the air/water interface: effect of block sequence and temperature. Colloid Polym Sci 293(1):97–107. doi:10.1007/s00396-014-3392-8

    Article  CAS  Google Scholar 

  15. Naolou T, Busse K, Lechner BD, Kressler J (2014) The behavior of poly(-caprolactone) and poly(ethylene oxide)-b-poly(-caprolactone) grafted to a poly(glycerol adipate) backbone at the air/water interface. Colloid Polym Sci 292(5):1199–1208. doi:10.1007/s00396-014-3168-1

    Article  CAS  Google Scholar 

  16. Stanimirova RD, Gurkov TD, Kralchevsky PA, Balashev KT, Stoyanov SD, Pelan EG (2013) Surface pressure and elasticity of hydrophobin HFBII layers on the air–water interface: rheology versus structure detected by AFM imaging. Langmuir 29(20):6053–6067

    Article  CAS  Google Scholar 

  17. Li Destri G, Miano F, Marletta G (2014) Structure–rheology relationship in weakly amphiphilic block copolymer Langmuir monolayers. Langmuir 30(12):3345–3353. doi:10.1021/la4043777

    Article  CAS  Google Scholar 

  18. Wamke A, Dopierała K, Prochaska K, Maciejewski H, Biadasz A, Dudkowiak A (2015) Characterization of Langmuir monolayer, Langmuir–Blodgett and Langmuir–Schaefer films formed by POSS compounds. Colloids Surf A Physicochem Eng Asp 464(0):110–120. doi:10.1016/j.colsurfa.2014.10.022

    Article  CAS  Google Scholar 

  19. Dopierala K, Wamke A, Dutkiewicz M, Maciejewski H, Prochaska K (2014) Interfacial properties of fully condensed functional silsesquioxane: a Langmuir monolayer study. J Phys Chem C 118(42):24548–24555. doi:10.1021/jp507670c

    Article  CAS  Google Scholar 

  20. Kucuk AC, Matsui J, Miyashita T (2011) Langmuir-Blodgett films composed of amphiphilic double-decker shaped polyhedral oligomeric silsesquioxanes. J Colloid Interface Sci 355(1):106–114. doi:10.1016/j.jcis.2010.12.033

    Article  CAS  Google Scholar 

  21. Deng J, Polidan JT, Hottle JR, Farmer-Creely CE, Viers BD, Esker AR (2002) Polyhedral oligomeric silsesquioxanes: a new class of amphiphiles at the air/water interface. J Am Chem Soc 124(51):15194–15195. doi:10.1021/ja027860v

    Article  CAS  Google Scholar 

  22. Hottle JR, Deng J, Kim H-J, Farmer-Creely CE, Viers BD, Esker AR (2005) Blends of amphiphilic poly(dimethylsiloxane) and nonamphiphilic octaisobutyl-POSS at the air/water interface. Langmuir 21(6):2250–2259. doi:10.1021/la047565j

    Article  CAS  Google Scholar 

  23. Yin W, Deng J, Esker AR (2009) Surface rheology of trisilanolisobutyl−POSS at the air/water interface. Langmuir 25(13):7181–7184. doi:10.1021/la900397r

    Article  CAS  Google Scholar 

  24. Mitsuishi M, Zhao F, Kim Y, Watanabe A, Miyashita T (2008) Preparation of ultrathin silsesquioxane nanofilms via polymer Langmuir−Blodgett films. Chem Mater 20(13):4310–4316. doi:10.1021/cm800067j

    Article  CAS  Google Scholar 

  25. Lee W, Ni S, Deng J, Kim B-S, Satija SK, Mather PT, Esker AR (2007) Telechelic poly(ethylene glycol)−POSS amphiphiles at the air/water interface. Macromolecules 40(3):682–688. doi:10.1021/ma0618171

    Article  CAS  Google Scholar 

  26. Maestro A, Ortega F, Monroy F, Krägel J, Miller R (2009) Molecular weight dependence of the shear rheology of poly(methyl methacrylate) Langmuir films: a comparison between two different rheometry techniques. Langmuir 25(13):7393–7400. doi:10.1021/la9003033

    Article  CAS  Google Scholar 

  27. Seo Y, Cho CY, Hwangbo M, Choi HJ, Hong SM (2008) Effect of temperature on the interfacial behavior of a polystyrene-b-poly(methyl methacrylate) diblock copolymer at the air/water interface. Langmuir 24(6):2381–2386. doi:10.1021/la702745w

    Article  CAS  Google Scholar 

  28. Maestro A, Ortega F, Rubio RG, Rubio MA, Krägel J, Miller R (2011) Rheology of poly(methyl methacrylate) Langmuir monolayers: percolation transition to a soft glasslike system. J Chem Phys 134(10):104704. doi:10.1063/1.3560612

    Article  CAS  Google Scholar 

  29. Wang Z, Wen G, Zhao F, Huang C, Wang X, Shi T, Li H (2014) Effect of selective solvent on the aggregate behavior of the mixed Langmuir monolayers of PS-b-PEO and PS-b-PMMA. RSC Adv 4(56):29595–29603. doi:10.1039/c4ra04161e

    Article  CAS  Google Scholar 

  30. Miñones J, Conde MMO, Yebra-Pimentel E, Trillo JM (2009) Behavior of syndiotactic poly(methyl methacrylate) monolayers at the air/water interface: influence of temperature and molecular weight on the surface pressure−area isotherms and Brewster angle microscopy images. J Phys Chem C 113(40):17455–17463. doi:10.1021/jp904848c

    Article  Google Scholar 

  31. Fuchs C, Hussain H, Schwieger C, Schulz M, Binder WH, Kressler J (2015) Molecular arrangement of symmetric and non-symmetric triblock copolymers of poly(ethylene oxide) and poly(isobutylene) at the air/water interface. J Colloid Interface Sci 437:80–89. doi:10.1016/j.jcis.2014.09.050

    Article  CAS  Google Scholar 

  32. Park H-W, Choi J, Ohn K, Lee H, Kim JW, Won Y-Y (2012) Study of the air–water interfacial properties of biodegradable polyesters and their block copolymers with poly(ethylene glycol). Langmuir 28(31):11555–11566. doi:10.1021/la300810q

    Article  CAS  Google Scholar 

  33. Lopes SI, Gonçalves da Silva AM, Brogueira P, Piçarra S, Martinho J (2007) Interfacial behavior of poly (isoprene-b-methyl methacrylate) diblock copolymers and their blends with polystyrene at the air-water interface. Langmuir 23(18):9310–9319

    Article  CAS  Google Scholar 

  34. Matmour R, Francis R, Duran RS, Gnanou Y (2005) Interfacial behavior of anionically synthesized amphiphilic star block copolymers based on polybutadiene and poly(ethylene oxide) at the air/water interface. Macromolecules 38(18):7754–7767. doi:10.1021/ma050578z

    Article  CAS  Google Scholar 

  35. Tong LJ, Bao MT, Li YM, Gong HY (2014) Interfacial dynamic and dilational rheology of polyelectrolyte/surfactant two-component nanoparticle systems at air–water interface. Appl Surf Sci 316(0):147–154. doi:10.1016/j.apsusc.2014.07.186

    Article  CAS  Google Scholar 

  36. Gzyl-Malcher B, Filek M, Brezesinski G (2011) Mixed DPPC/DPTAP monolayers at the air/water interface: influence of indolilo-3-acetic acid and selenate ions on the monolayer morphology. Langmuir 27(17):10886–10893. doi:10.1021/la201765u

    Article  CAS  Google Scholar 

  37. Conde MM, Conde O, Trillo JM, Miñones J (2011) Approach to knowledge of the interaction between the constituents of contact lenses and ocular tears: mixed monolayers of poly(methyl methacrylate) and dipalmitoyl phosphatidyl choline. Langmuir 27(7):3424–3435. doi:10.1021/la1051172

    Article  CAS  Google Scholar 

  38. Spigone E, Cho G-Y, Fuller GG, Cicuta P (2009) Surface rheology of a polymer monolayer: effects of polymer chain length and compression rate. Langmuir 25(13):7457–7464. doi:10.1021/la900385y

    Article  CAS  Google Scholar 

  39. Martín-García B, Velázquez MM (2013) Block copolymer assisted self-assembly of nanoparticles into Langmuir–Blodgett films: effect of polymer concentration. Mater Chem Phys 141(1):324–332

    Article  Google Scholar 

  40. Zhu H, Matsui J, Yamamoto S, Miyashita T, Mitsuishi M (2015) Solvent-dependent properties of poly(vinylidene fluoride) monolayers at the air-water interface. Soft Matter 11(10):1962–1972. doi:10.1039/C4sm02800g

    Article  CAS  Google Scholar 

  41. Martín-García B, Velázquez MM, Pérez-Hernández JA, Hernández-Toro J (2010) Langmuir and Langmuir−Blodgett films of a maleic anhydride derivative: effect of subphase divalent cations. Langmuir 26(18):14556–14562. doi:10.1021/la101736e

    Article  Google Scholar 

  42. Hilles HM, Ortega F, Rubio RG, Monroy F (2004) Long-time relaxation dynamics of Langmuir films of a glass-forming polymer: evidence of glasslike dynamics in two dimensions. Phys Rev Lett 92(25):255503

    Article  Google Scholar 

  43. Gargallo L, Becerra N, Encinas MV, Ortega F, Rubio RG, Leiva A, Radic D (2015) Amphiphilic 2-ethyl hexyl methacrylate-b-N,N ’-dimethylacrylamide diblock copolymer monolayer behaviour at the air-water interface. Polym Int 64(6):740–749. doi:10.1002/Pi.4845

    Article  CAS  Google Scholar 

  44. Klein CO, de Viguerie L, Christopoulou C, Jonas U, Clark CG, Müllen K, Vlassopoulos D (2011) Viscoelasticity of semifluorinated alkanes at the air/water interface. Soft Matter 7(17):7737–7746. doi:10.1039/c1sm05357d

    Article  CAS  Google Scholar 

  45. Njikang GN, Cao L, Gauthier M (2008) Pressure- and temperature-induced association of arborescent polystyrene-graft-poly(ethylene oxide) copolymers at the air−water interface. Langmuir 24(22):12919–12927. doi:10.1021/la802163k

    Article  CAS  Google Scholar 

  46. Juárez J, Goy-López S, Cambón A, Valdez MA, Taboada P, Vc M (2010) Surface properties of monolayers of amphiphilic poly (ethylene oxide)-poly (styrene oxide) block copolymers. J Phys Chem C 114(37):15703–15712

    Article  Google Scholar 

  47. Glagola CP, Miceli LM, Milchak MA, Halle EH, Logan JL (2012) Polystyrene–poly(ethylene oxide) diblock copolymer: the effect of polystyrene and spreading concentration at the air/water interface. Langmuir 28(11):5048–5058. doi:10.1021/la204100d

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiguang Li or Xiaoyan Ma.

Ethics declarations

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 51372206), Natural Science Foundation of Shaanxi Province (Grant No. 2013JM2012), and NPU Foundation for Fundamental Research (3102014JCQ01089).

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 6851 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Ma, X., Guan, X. et al. Aggregation behavior of star-shaped fluoropolymers containing polyhedral oligomeric silsesquioxane (POSS) at the air–water interface. Colloid Polym Sci 295, 157–170 (2017). https://doi.org/10.1007/s00396-016-3986-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3986-4

Keywords

Navigation