Skip to main content
Log in

Chiral photosensitive side-chain liquid crystalline polymers—synthesis and characterization

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The cholesteric polysiloxanes (P series) were obtained by reacting cholesteric monomer and phenolic hydroxyl monomer in different ratios with polysiloxanes. And then the chiral azo-containing polysiloxanes (AP series) were synthesized by esterifying P series members with the acryl acid of azo acid catalyzed by DMAP. The chemical structures and liquid crystal (LC) properties of the monomers and polymers were characterized by use of various experimental techniques such as FTIR, 1H-NMR, POM, DSC, TGA, XRD and ultraviolet-visible. Experimental results proved that obtained polymers were in accordance with the molecular design. The transition temperatures of the polymers exhibited a decreasing trend as the content of the cholesteric units increased and became higher by introducing the azo mesogenic core. The temperatures at which 5 % weight loss occurred are higher than 280 °C. P2–P6 showed blue Grandjean textures and exhibited selective reflection in the visible light region. AP series also possessed Grandjean textures, and the colors exhibited red shift with increasing content of azo moiety. On the heating cycles, when appropriate mechanical pressure was imposed on the polymers, AP2–AP6 selectively reflect visible light; however, there are no reflection peaks in the UV-Vis spectrum without the stimulation of mechanical pressure. All polymers exhibit left-handed optical activity due to having the same cholesteric group. The optical rotation direction of AP changes from left to right when increasing the UV irradiation time, and the photoresponsive behaviors of AP series are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Natansohn A, Rochon P (2002) Photoinduced motions in azo-containing polymers. Chem Rev 102(11):4139–4175

    Article  CAS  Google Scholar 

  2. Archut A, Azzellini GC, Balzani V, et al. (1998) Toward photoswitchable dendritic hosts. Interaction between azobenzene-functionalized dendrimers and eosin. J Am Chem So 120(47):12187–12191

    Article  CAS  Google Scholar 

  3. Jiang DL, Aida T (1997) Photoisomerization in dendrimers by harvesting of low-energy photons. Nature 388(6641):454–456

    Article  CAS  Google Scholar 

  4. Lin PC, Cong YH, Sun C, Zhang BY (2016) Non-covalent modification of reduced graphene oxide by a chiral liquid crystalline surfactant. Nanoscale 8(4):2403–2411

    Article  CAS  Google Scholar 

  5. Marin L, Zabulica A, Sava M (2011) New symmetric azomethinic dimer: the influence of structural heterogeneity on the liquid crystalline behaviour. Liq Cryst 38(4):433–440

    Article  CAS  Google Scholar 

  6. Andruzzi L, D’Apollo F, Galli G, et al. (2001) Synthesis and structure characterization of liquid crystalline polyacrylates with unconventional fluoroalkylphenyl mesogens. Macromolecules 34(22):7707–7714

    Article  CAS  Google Scholar 

  7. Bobrovsky A, Shibaev V, Hamplova V, et al. (2016) Photo-optical properties of amorphous and crystalline films of azobenzene-containing photochromes with bent-shaped molecular structure. Photoch Photobio A 316:75–87

    Article  CAS  Google Scholar 

  8. Bobrovsky A, Shibaev V, Bubnov A, et al. (2013) Effect of molecular structure on chiro-optical and photo-optical properties of smart liquid crystalline polyacrylates. Macromolecules 46(11):4276–4284

    Article  CAS  Google Scholar 

  9. Ryabchun A, Bobrovsky A, Stumpe J, et al. (2015) Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch. Adv Opt Mater 3(9):1273–1279

    Article  CAS  Google Scholar 

  10. Meng FB, He XZ, Zhang XD, et al. (2011) Effect of terminal perfluorocarbon chain containing mesogens on phase behaviors of chiral comb-like liquid crystalline polymers. Colloid Polym Sci 289(8):955–965

    Article  CAS  Google Scholar 

  11. Han DH, Tong X, Zhao Y, et al. (2010) Cyclic azobenzene-containing side-chain liquid crystalline polymers: synthesis and topological effect on mesophase transition, order, and photoinduced birefringence. Macromolecules 43(8):3664–3671

    Article  CAS  Google Scholar 

  12. Gimenez R, Millaruelo M, Pinol M, et al. (2005) Synthesis, thermal and optical properties of liquid crystalline terpolymers containing azobenzene and dye moieties. Polymer 46(22):9230–9242

    Article  CAS  Google Scholar 

  13. Hattori H, Uryu T (2000) Synthesis and properties of photochromic liquid-crystalline copolymers containing both spironaphthoxazine and cholesteryl groups. J Polym Sci Pol Chem 38(5):887–894

    Article  CAS  Google Scholar 

  14. Statman D, Basore V, Sulai Y, et al. (2008) Photoinduced gliding of the surface director in azo-dye doped nematic liquid crystals. Liq Cryst 35(1):33–38

    Article  CAS  Google Scholar 

  15. Singh U, Davis F, Mohan S, Mitchell G (2013) Electro-active nanofibres electrospun from blends of poly-vinyl cinnamate and a cholesteric liquid crystalline silicone polymer. J Mater Sci 48(21):7613–7619

    Article  CAS  Google Scholar 

  16. Han M, Morino S, Ichimura K (2000) Factors affecting in-plane and out-of-plane photo orientation of azobenzene side chains attached to liquid crystalline polymers induced by irradiation with linearly polarized light. Macromolecules 33(17):6360–6371

    Article  CAS  Google Scholar 

  17. Hvilsted S, Andruzzi F, Kulinna C, et al. (1995) Novel side-chain liquid-crystalline polyester architecture for reversible optical storage. Macromolecules 28(7):2172–2183

    Article  CAS  Google Scholar 

  18. Apreutesei D, Mehl GH, Scutaru D (2007) Ferrocene-containing liquid crystals bearing a cholesteryl unit. Liq Cryst 34(7):819–831

    Article  CAS  Google Scholar 

  19. Lin PC, Cong YH, Zhang BY (2015) Dispersing carbon nanotubes by chiral network surfactants. ACS Appl Mater Interfaces 7(12):6724–6732

    Article  CAS  Google Scholar 

  20. Agnieszka I, Boharewicz B, Tazbir I, et al. (2015) Laser beam induced current technique of polymer solar cells based on new poly(azomethine) or poly(3-hexylthiophene. Solid State Electron 104:53–63

    Article  Google Scholar 

  21. Abrakhi S, Peralta S, Cantin S, et al. (2012) Synthesis and characterization of photosensitive cinnamate-modified cellulose acetate butyrate spin-coated or network derivatives. Colloid Polym Sci 290(5):423–434

    Article  CAS  Google Scholar 

  22. Tejedor RM, Oriol L, Serrano J, et al. (2007) Photoinduced chiral nematic organization in an achiral glassy nematic azopolymer. Adv Funct Mater 17:3486–3492

    Article  CAS  Google Scholar 

  23. Bobrovsky A, Shibaev V (2006) A study of photooptical processes in photosensitive cholesteric azobenzene-containing polymer mixture under an action of the polarized and nonpolarized light. Polymer 47(12):4310–4317

    Article  CAS  Google Scholar 

  24. Andruzzi L, Altomare A, Ciardelli F, et al. (1999) Holographic gratings in azobenzene side-chain polymethacrylates. Macromolecules 32:448–454

    Article  CAS  Google Scholar 

  25. Viswanathan NK, Kim DY, Bian S, et al. (1999) Surface relief structures on azo polymer films. J Mater Chem 9(9):1941–1955

    Article  CAS  Google Scholar 

  26. Karim MR, Sheikh MRK, Yahya R, et al. (2015) Synthesis of polyme-rizable liquid crystalline monomers and their side chain liquid crystalline polymers bearing azo-ester linked benzothiazole mesogen. Colloid Polym Sci 293:1923–1935

    Article  CAS  Google Scholar 

  27. Kanazawa A, Hirano S, Shishido A, et al. (1997) Photochemical phase transition behaviour of polymer azobenzene liquid crystals with flexible siloxane units as a side-chain spacer. Liq Cryst 23(2):293–298

    Article  CAS  Google Scholar 

  28. Jui-Hsiang L, Yang P-C, Wang Y-K, et al. (2006) Optical behaviour of cholesteric liquid crystal cells with novel photoisomerizable chiral dopants. Liq Cryst 33(3):237–248

    Article  Google Scholar 

  29. Ho MS, Natansohn A, Rochon P (1996) Synthesis and optical properties of poly{(4-nitrophenyl)-[3-[N-[2-(methacryloyloxy)ethyl]-carbazolyol]]diazene}. Macromolecules 29(1):44–49

    Article  CAS  Google Scholar 

  30. Zettsu N, Ogasawara T, Mizoshita N, et al. (2008) Photo-triggered surface relief grating formation in supramolecular liquid crystalline polymer systems with detachable azobenzene units. Adv Mater 20(3):516–521

    Article  CAS  Google Scholar 

  31. Forcen P, Oriol L, Sanchez C, et al. (2007) Synthesis, characterization and photoinduction of optical anisotropy, in liquid crystalline diblock azo-copolymers. J Polym Sci Pol Chem 45(10):1899–1910

    Article  CAS  Google Scholar 

  32. Bobrovsky A, Shibaev V, Hamplova V, et al. (2010) Gel formation and photoactive properties of azobenzene-containing polymer in liquid crystal mixture. Colloid Polym Sci 288:1375–1384

    Article  CAS  Google Scholar 

  33. Srinivasan MV, Kannan P, Roy A (2013) Photo and electrically switchable behavior of azobenzene containing pendant bent-core liquid crystalline polymers. J Polym Sci Pol Chem 51:936–946

    Article  CAS  Google Scholar 

  34. Yang ZQ, Herd GA, Clarke SM, et al. (2006) Thermal and UV shape shifting of surface topography. J Am Chem Soc 128:1074–1075

    Article  CAS  Google Scholar 

  35. Delaire J, Nakatani K (2000) Linear and nonlinear optical properties of photochromic molecules and materials. Chem Rev 100:1817–1846

    Article  CAS  Google Scholar 

  36. Mahimwalla Z, Yager KG, Jun-ichi, et al. (2012) Azobenzene photomechanics: prospects and potential applications. Polym Bull 69:967–1006

    Article  CAS  Google Scholar 

  37. Ana-Maria R, Luiza E, Nicolae H (2010) Surface properties, thermal behaviorand molecular simulation of azo-polysiloxanes under light stimuli. Insight into the relaxation. Macromol Res 18:721–729

    Article  Google Scholar 

  38. Zhou QL, Yan SK, Han CC, et al. (2008) Promising functional materials based on ladder polysiloxanes. Adv Mater 20:2970–2976

    Article  CAS  Google Scholar 

  39. Kaspar M, Bubnov A, Hamplova V, et al. (2004) New ferroelectric liquid crystalline materials with an azo group in the molecular core. Liq Crtyst 31(6):821–830

    Article  CAS  Google Scholar 

  40. Cigl M, Fodor-Csorba K, et al. (2014) Functional photochromic methylhydrosiloxane -based side-chain liquid crystalline polymer. Macromol Chem Phys 215:742–752

    Article  Google Scholar 

  41. Abe J, Hasegawa M, Matsushina H, et al. (1995) Investigation of dipolar alignment of mesogenic chromophores in side chain liquid crystalline polysiloxane using electric field induced second harmonic generation. Macromolecules 28(8):2938–2943

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Zhi He.

Ethics declarations

Funding

This study was funded by Fundamental Research Funds for the Central Universities (N130205001), The National Natural Science Foundation (51273035), and the Scientific and Technical Bureau Foundation of Shen Yang City (F16-205-1-03).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, XZ., Gao, YF., Zheng, JJ. et al. Chiral photosensitive side-chain liquid crystalline polymers—synthesis and characterization. Colloid Polym Sci 294, 1823–1832 (2016). https://doi.org/10.1007/s00396-016-3939-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3939-y

Keywords

Navigation