Skip to main content
Log in

Statistics of strength distribution upon the start of adhesion between glassy polymers

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

For the first time, the strength distribution upon the bonding onset between the contacting glassy polymer samples has been analysed by employing the Weibull statistics. It has been found that the distribution of the lap-shear strength (σ) developed between the contacting pieces of such representative amorphous polymers as atactic polystyrene (PS) and poly(methyl methacrylate) (PMMA) at the time-temperature healing conditions at which the interface bonding starts follows the Weibull distribution function. It has been shown that the σ distributions for the compatible PS-PS and PMMA-PMMA and incompatible PS-PMMA interfaces are not affected by the factor of thermodynamic compatibility of the PS and PMMA segments. The estimated values of the Weibull modulus m and of the scale parameter σ 0 for the weak polymer-polymer interfaces investigated have been compared with those estimated for the tensile strengths of the PS and PMMA monolithic bulk samples which were used for the interface healing experiments and of the ultra-high-strength inorganic quasi-brittle materials reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boiko YM, Prud’homme RE (1997) Bonding at symmetric polymer/polymer interfaces below the glass transition temperature. Macromolecules 30:3708–3710. doi:10.1021/ma960002x

    Article  CAS  Google Scholar 

  2. Boiko YM, Lyngaae-Jørgensen J (2004) Bonding at compatible and incompatible amorphous interfaces of polystyrene and poly(methyl methacrylate) below the glass transition temperature. J Macromol Sci Phys 43:695–709. doi:10.1081/MB-120030015

    Article  Google Scholar 

  3. Boiko YM (2013) Is adhesion between amorphous polymers sensitive to the bulk glass transition? Colloid Polym Sci 291:2259–2262. doi:10.1007/s00396-013-2958-1

    Article  CAS  Google Scholar 

  4. Boiko YM, Prud’homme RE (1998) Morphology of fractured polymer surfaces self-bonded below the glass transition temperature. Mech Compos Mater 34:473–482. doi:10.1007/BF02254711

    Article  CAS  Google Scholar 

  5. Boiko YM, Lyngaae-Jørgensen J (2004) Auto-adhesion of high-molecular-weight monodisperse glassy polystyrene at unexpectedly low temperatures. J Macromol Sci Part B Phys B43:925–934. doi:10.1081/MB-200033257

    Article  CAS  Google Scholar 

  6. Zhang X, Tasaka S, Inagaki N (2000) Surface mechanical properties of low-molecular-weight polystyrene below its glass-transition temperatures. J Polym Sci Part B Polym Phys 38:654–658. doi:10.1002/(SICI)1099-0488(20000301)

    Article  CAS  Google Scholar 

  7. Boiko YM, Lyngaae-Jørgensen J (2005) A phenomenon of the auto-adhesion of high-molecular-weight polystyrene and poly(methyl methacrylate) at room temperature. Polym Sci B 47:867–870

    CAS  Google Scholar 

  8. Boiko YM (2016) On the molecular mechanism of self-healing of glassy polymers. Colloid Polym Sci 294:1237–1242. doi:10.1007/s00396-016-3868-9

    Article  CAS  Google Scholar 

  9. Boiko YM (2011) Interdiffusion of polymers with glassy bulk. Colloid Polym Sci 289:1847–1854. doi:10.1007/s00396-011-2508-7

    Article  CAS  Google Scholar 

  10. Boiko YM, Prud’homme RE (1999) Mechanical properties developing at the interface of amorphous miscible polymers, below the glass transition temperature: time-temperature superposition. J Appl Polym Sci 74:825–830. doi:10.1002/(SICI)1097-4628(19991024)

    Article  CAS  Google Scholar 

  11. Boiko YM, Lyngaae-Jørgensen J (2004) Healing of interfaces of high- and ultra-high-molecular-weight polystyrene below the glass transition temperature of the bulk. Polymer 45:8541–8549. doi:10.1016/j.polymer.2004.10.021

    Article  CAS  Google Scholar 

  12. Voyutskii SS (1963) Autoadhesion and adhesion of high polymers. Interscience, New York

    Google Scholar 

  13. Wool RP (1995) Polymer interfaces: structure and strength. Hanser Press, Munich

    Google Scholar 

  14. Kajiyama T, Tanaka K, Takahara A (1995) Depth dependence of the surface glass transition temperature of a poly(styrene-block-methyl methacrylate) diblock copolymer film on the basis of temperature-dependent X-ray photoelectron spectroscopy. Macromolecules 28:3482–3484. doi:10.1021/ma00113a059

    Article  CAS  Google Scholar 

  15. Mansfield KF, Theodorou DN (1991) Molecular dynamics simulation of a glassy polymer surface. Macromolecules 24:6283–6294. doi:10.1021/ma00023a034

    Article  CAS  Google Scholar 

  16. Meyers GF, DeCoven BM, Seitz JT (1992) Is the molecular surface of polystyrene really glassy? Langmuir 8:2330–2335. doi:10.1021/la00045a042

    Article  CAS  Google Scholar 

  17. Boiko YM (2010) New simple method of measuring the surface glass transition temperature of polymers. J Polym Sci Part B Polym Phys 48:2012–2021. doi:10.1002/polb.22081

    Article  CAS  Google Scholar 

  18. Tanaka F, Okabe T, Okuda H, Kinloch IA, Young RJ (2014) Factors controlling the strength of carbon fibres in tension. Composites Part A 57:88–94. doi:10.1016/jcompositesa.2013.11.007

    Article  CAS  Google Scholar 

  19. Baikova LG, Pesina TI, Kireenko MF, Tikhonova LV, Kurkjian CR (2015) Strength of optical silica fibers measured in liquid nitrogen. Tech Phys 60:869–872. doi:10.1134/S1063784215060031

    Article  CAS  Google Scholar 

  20. Wilson DM (1997) Statistical tensile strength of Nextel™ 610 and Nextel™ 720 fibres. J Mater Sci 32:2535–2542. doi:10.1023/A:1018538030985

    Article  CAS  Google Scholar 

  21. Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297

    Google Scholar 

  22. Foster KL, Wool RP (1991) Strength of polystyrene-poly(methyl methacrylate) interfaces. Macromolecules 24:1397–1403. doi:10.1021/ma00006a028

    Article  CAS  Google Scholar 

  23. Willett JL, Wool RP (1993) Strength of incompatible amorphous polymer interfaces. Macromolecules 26:5336–5349. doi:10.1021/ma00072a010

    Article  CAS  Google Scholar 

  24. Barber AH, Andrews R, Shaudler LS, Wagner HD (2005) On the tensile strength distribution of multiwalled carbon nanotubes. Appl Phys Lett 87:203106. doi:10.1063/1.2130713

    Article  Google Scholar 

  25. Sullivan JD, Lauzon PH (1986) Experimental probability estimators for Weibull plots. J Mater Sci Lett 5:1245–1247. doi:10.1007/BF01729379

    Article  Google Scholar 

  26. Gurvich MR, Dibenedetto AT, Pegoretti A (1997) Evaluation of the statistical parameters of a Weibull distribution. J Mater Sci 32:3711–3716. doi:10.1023/A:1018603118573

    Article  CAS  Google Scholar 

  27. Sun G, Pang JHL, Zhou J, Zhang Y, Zhan Z, Zheng L (2012) A modified Weibull model for tensile strength distribution of carbon nanotube fibers with strain rate and size effects. Appl Phys Lett 101:131905. doi:10.1063/1.4754709

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Federal Agency of Scientific Organisations of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri M. Boiko.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boiko, Y.M. Statistics of strength distribution upon the start of adhesion between glassy polymers. Colloid Polym Sci 294, 1727–1732 (2016). https://doi.org/10.1007/s00396-016-3934-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3934-3

Keywords

Navigation