Skip to main content
Log in

Structural investigation of P(BPMA/CPPHMA) and P(MMA/BPMA/CPPHMA) copolymers

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We present a detailed structural characterization of 6-[4-(4´-cyanophenyl)phenoxy]hexyl methacrylate (CPPHMA) side chain liquid crystal homopolymer and its copolymers with either 4-benzoylphenyl methacrylate (BPMA) or methyl methacylate (MMA) and BPMA. The thermotropic properties of copolymers with stepwise varied chemical composition are investigated with differential scanning calorimetry (DSC) and polarized optical microscopy (POM). Two-dimensional and temperature-dependent X-ray scattering measurements are employed to determine the liquid crystalline phase behavior and to elucidate the copolymer microstructure. While the P(CPPHMA) homopolymer exhibits a smectic A phase, copolymers having CPPHMA comonomer content of 79 mol% and higher show weak liquid crystalline behavior. Structural models are proposed for the layered smectic phase of the homopolymer and the copolymers on the basis of the results of the X-ray measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ganicz T, Stańczyk W (2009) Side-chain liquid crystal polymers (SCLCP): methods and materials. An overview Materials 2:95–128

    Article  CAS  Google Scholar 

  2. Mei J, Bao Z (2014) Side chain engineering in solution-processable conjugated polymers. Chem Mater 26(1):604–615

    Article  CAS  Google Scholar 

  3. Cho N, Schlenker CW, Knesting KM, Koelsch P, Yip H-L, Ginger DS, Jen AK-Y (2014) High-dielectric constant side-chain polymers show reduced non-geminate recombination in heterojunction solar cells. Adv Energy Mater 4(10):1301857

    Article  Google Scholar 

  4. Lee J, Kim M, Kang B, Jo SB, Kim HG, Shin J, Cho K (2014) Polymer solar cells: side-chain engineering for fine-tuning of energy levels and nanoscale morphology in polymer solar cells. Adv Energy Mater 4(10):1400087

    Article  Google Scholar 

  5. Bates FM, Fredrickson GH (1990) Block copolymer thermodynamics: theory and experiment. Annu Rev Phys Chem 41:525–557

    Article  CAS  Google Scholar 

  6. Hamley IW (1998) The physics of block copolymers. Oxford, New York

    Google Scholar 

  7. Adams J, Gronski W (1989) LC side chain AB-block copolymers with an amorphous A-block and a liquid-crystalline B-block. Macromol Chem Rapid Commun 10:553–557

    Article  CAS  Google Scholar 

  8. Fischer H, Poser S, Arnold M, Frank W (1994) On the influence of the morphological structure on the liquid crystalline behavior of liquid crystalline side chain block copolymers. Macromolecules 27(24):7133–7138

    Article  CAS  Google Scholar 

  9. Bohnert R, Finkelmann H (1994) Liquid-crystalline side-chain AB block copolymers by direct anionic polymerization of a mesogenic methacrylate. Macromol Chem Phys 195:689–700

    Article  CAS  Google Scholar 

  10. Yamada M, Iguchi T, Hirao A, Nakahama S, Watanabe J (1995) Synthesis of side-chain liquid crystalline homopolymers and block copolymers with well-defined structures by living anionic polymerization and their thermotropic phase behavior. Macromolecules 28:50–58

    Article  CAS  Google Scholar 

  11. Mao G, Wang J, Clingman SR, Ober CK, Chen JT, Thomas EL (1997) Molecular design, synthesis, and characterization of liquid crystal−coil diblock copolymers with azobenzene side groups. Macromolecules 30:2556–2567

    Article  CAS  Google Scholar 

  12. Saenger J, Gronski W, Maas S, Stuehn B, Heck B (1997) Structural transition in a nematic LC block copolymer induced by the transition to the LC phase. Macromolecules 30:6783–6787

    Article  CAS  Google Scholar 

  13. Anthamatten M, Hammond PT (1999) A SAXS study of microstructure ordering transitions in liquid crystalline side-chain diblock copolymers. Macromolecules 32:8066–8076

    Article  CAS  Google Scholar 

  14. Lee M, B.-K C, Zin W-C (2001) Supramolecular structures from rod–coil block copolymers. Chem Rev 101:3869–3892

    Article  CAS  Google Scholar 

  15. Hamley IW, Castelletto V, Lu ZB, Imrie CT, Itoh T, Al-Hussein M (2004) Interplay between smectic ordering and microphase separation in a series of side-group liquid-crystal block copolymers. Macromolecules 37:4798–4807

    Article  CAS  Google Scholar 

  16. Al-Hussein M, de Jeu WH, Vranichar L, Pispas S, Hadjichristidis N, Itoh T, Watanabe J (2004) Bulk and thin film ordering in side-chain liquid-crystalline/amorphous diblock copolymers: the role of chain length. Macromolecules 37:6401–6407

    Article  CAS  Google Scholar 

  17. de Jeu WH, Serero Y, Al-Hussein M (2005) Liquid crystallinity in block copolymer films for controlling polymeric nanopatterns. Adv Polym Sci 181:75

    Article  Google Scholar 

  18. Anthamatten M, Hammond PT (2001) Free-energy model of asymmetry in side-chain liquid-crystalline diblock copolymers. J Polym Sci Part B:Polym Phys 39:2671–2691

    Article  CAS  Google Scholar 

  19. Berndt A, Pospiech D, Jehnichen D, Häußler L, Voit B, Al-Hussein M, Plötner M, Kumar A, Fischer W-J (2015) Methacrylate copolymers with liquid crystalline side chains for organic gate dielectric applications. ACS Appl Mater Interfaces 7:12339–12347

    Article  CAS  Google Scholar 

  20. Yamada M, Itoh T, Nakagawa R, Hirao A, Nakahama S, Watanabe J (1999) Synthesis of side-chain liquid crystalline homopolymers and block copolymers with cyanobiphenyl moieties as the mesogen by living anionic polymerization and their thermotropic phase behavior. Macromolecules 32:282–289

    Article  CAS  Google Scholar 

  21. Craig A, Imrie CT (1995) Effect of spacer length on the thermal properties of side-chain liquid crystal polymethacrylates. 2. Synthesis and characterization of the poly[.Omega.-(4’-cyanobiphenyl-4-yloxy)alkyl methacrylate]s. Macromolecules 28:3617–3624

    Article  CAS  Google Scholar 

  22. McArdle CB (1989) Side chain liquid crystal polymers. Chapman and Hall, New York

    Google Scholar 

  23. Imrie CT, Schleeh T, Karasz FE, Attard GS (1993) Dependence of the transitional properties of polystyrene-based side-chain liquid-crystalline polymers on the chemical nature of the mesogenic group. Macromolecules 26:539–544

    Article  CAS  Google Scholar 

  24. Strobl G (2007) The physics of polymers, 3rd edn. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

This work is partly supported by the German Research Foundation (DFG) within the Cluster of Excellence ‘Center for Advancing Electronics Dresden’ (financing of A. Berndt). Prof. Dr. Mahmoud Al-Hussein thanks the University of Jordan and the Leibniz-Institut für Polymerforschung Dresden e.V. for financial support. We also thank Torsten Hofmann, Kerstin Arnhold, and Petra Treppe from Leibniz-Institut für Polymerforschung Dresden e.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Al-Hussein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hussein, M., Berndt, A., Jehnichen, D. et al. Structural investigation of P(BPMA/CPPHMA) and P(MMA/BPMA/CPPHMA) copolymers. Colloid Polym Sci 294, 1475–1481 (2016). https://doi.org/10.1007/s00396-016-3908-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3908-5

Keywords

Navigation