Skip to main content

Advertisement

Log in

Numerical simulation on polymer translocation into crowded environment with nanoparticles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The effects of crowded environment with nano particles are studied for polymer translocation through a small pore. The translocation time τ is simulated by Fokker-Planck equation at different free energy landscapes F and diffusion coefficients of polymer D. The free energy is calculated using the Rosenbluth-Rosenbluth method, and the diffusion coefficient is followed the relation \(D \sim \frac {1}{N} e^{-\triangle F}\). We find that the free energy is dependent on polymer-nanoparticle interaction, size of the nanoparticle, and position of the nanoparticle. The attractive nanoparticles at the trans side can provide a driving force to polymer by lowering the free energy, but the exclusive effect of nanoparticle can raise the free energy of polymer. There exists an optimum interaction that τ is roughly independent on the size and position of nanoparticles. It is found that these effects are related to the conformational change of polymer chain in crowded environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Simon SM, Blobel G (1991) A protein-conducting channel in the endoplasmic reticulum. Cell 65:371

    Article  CAS  Google Scholar 

  2. Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Scad Sci USA 93:13770

    Article  CAS  Google Scholar 

  3. Hanss B, Leal-Pinto EB, Copland TD, Klotman PE (1998) Identification and characterization of a cell membrane nucleic acid channel. Proc Natl Scad Sci USA 95:1921

    Article  CAS  Google Scholar 

  4. Kasimova AO, Pavan GM, Danani A, Mondon K, Cristiani A, Scapozza L, Gurny R, Möller M (2012) Validation of a novel molecular dynamics simulation approach for lipophilic drug incorporation into polymer micelles. J Phys Chem B 116:4338

    Article  CAS  Google Scholar 

  5. Zimm BH, Levene SD (1992) Problems and prospects in the theory of gel electrophoresis of DNA. Q Rev Biophys 25:171

    Article  CAS  Google Scholar 

  6. Akeson M, Branton D, Kasianowicz JJ, Brandin E, Deamer DW (1999) Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys J 77:3227

    Article  CAS  Google Scholar 

  7. Meller A, Branton D (2002) Single molecule measurements of DNA transport through a nanopore. Electrophoresis 23:2583

    Article  CAS  Google Scholar 

  8. Meller A, Nivon L, Branton D (2001) Voltage-Driven DNA Translocations through a nanopore. Phys Rev Lett 86:3435

    Article  CAS  Google Scholar 

  9. Tian P, Smith GD (2003) Translocation of a polymer chain across a nanopore: a Brownian dynamics simulation study. J Chem Phys 119:11475

    Article  CAS  Google Scholar 

  10. Henrickson SE, Misakian M, Robertson B, Kasianowicz JJ (2000) Driven DNA transport into an asymmetric Nanometer-Scale pore. Phys Rev Lett 85:3057

    Article  CAS  Google Scholar 

  11. Muthukumar M (2003) Polymer escape through a nanopore. J Chem Phys 118:5174

    Article  CAS  Google Scholar 

  12. Luo KF, Ala-Nissila T, Ying SC, Bhattacharya A (2007) Influence of Polymer-Pore interactions on translocation. Phys Rev Lett 99:148102

    Article  Google Scholar 

  13. Luo MB (2007) Translocation of polymer chains through interacting nanopores. Polymer 48:7679

    Article  CAS  Google Scholar 

  14. Wei DS, Yang W, Jin XG, Liao Q (2007) Unforced translocation of a polymer chain through a nanopore: the solvent effect. J Chem Phys 126:204901

    Article  Google Scholar 

  15. Sung W, Park PJ (1996) Polymer translocation through a pore in a membrane. Phys Rev Lett 77:783

    Article  CAS  Google Scholar 

  16. Chuang J, Kantor Y, Kantar M (2001) Anomalous dynamics of translocation. Phys Rev E 65:011802

    Article  Google Scholar 

  17. Muthukumar M (2001) Translocation of a confined polymer through a hole. Phys Rev Lett 86:3188

    Article  CAS  Google Scholar 

  18. Sebastian KL, Paul AKR (2000) Kramers problem for a polymer in a double well. Phys Rev E 62:927

    Article  CAS  Google Scholar 

  19. Muthukumar M, Baumgaertner A (1989) Effects of entropic barriers on polymer dynamics. Macromoleules 22:1937

    Article  CAS  Google Scholar 

  20. Wei C, Srivastava D (2003) Theory of transport of long polymer molecules through carbon nanotube channels. Phys Rev Lett 91:235901

    Article  Google Scholar 

  21. Cao WP, Sun LZ, Wang C, Luo MB (2011) Monte Carlo simulation on polymer translocation in crowded environment. J Chem Phys 135:174901

    Article  Google Scholar 

  22. Matlack KES, Mothes W, Rapoport TA (1998) Protein translation: tunnel vision. Cell 92:381

    Article  CAS  Google Scholar 

  23. Neupert W, Brunner M (2002) The protein import motor of mitochondria. Nat Rev Mol Cell Biol 3:555

    Article  CAS  Google Scholar 

  24. Yu WC, Luo KF (2011) Chaperone-assisted translocation of a polymer through a nanopore. J Am Chem Soc 133:13565

    Article  CAS  Google Scholar 

  25. Saxton MJ (1994) Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys J 66:394

    Article  CAS  Google Scholar 

  26. Gopinathan A, Kim YW (2007) Polymer translocation in crowded environments. Phys Rev Lett 99:228106

    Article  Google Scholar 

  27. Yu WC, Ma YD, Luo KF (2012) Translocation of stiff polymers through a nanopore driven by binding particles. J Chem Phys 137:244905

    Article  Google Scholar 

  28. Chen YH, Luo KF (2013) Dynamics of polymer translocation through a nanopore induced by different sizes of crowding agents. J Chem Phys 138:204903

    Article  Google Scholar 

  29. Li CY, Qian CJ, Yang QH, Luo MB (2014) Study on the polymer diffusion in a media with periodically distributed nano-sized fillers. J Chem Phys 140:104902

    Article  Google Scholar 

  30. Fulton AB (1982) How crowded is the cytoplasm? Cell 30:345

    Article  CAS  Google Scholar 

  31. Chen JX, Zhu JX, Ma YQ, Cao JS (2014) Translocation of a forced polymer chain through a crowded channel. EPL 106:18003

    Article  Google Scholar 

  32. Machta J, Guyer RA (1989) Polymers in a disordered environment. J Phys A: Math Gen 22:2539

    Article  Google Scholar 

  33. Xue XG, Zhao L, Lv ZY, Li ZS (2012) Free energy and scalings for polymer translocation through a nanopore: a molecular dynamics simulation study combined with milestoning. Phys Lett A 376:290

    Article  CAS  Google Scholar 

  34. Sun LZ, Cao WP, Luo MB (2009) Free energy landscape for the translocation of polymer through an interacting pore. J Chem Phys 131:194904

    Article  Google Scholar 

  35. Sun LZ, Cao WP, Luo MB (2011) Translocation properties of copolymer (AnBm)l through an interacting pore. Phys Rev E 84:041912

    Article  Google Scholar 

  36. Rosenbluth MN, Rosenbluth AW (1954) Monte carlo calculation of the average extension of molecular chains. J Chem Phys 23:356

    Google Scholar 

  37. Grassberger P (1997) Pruned-enriched Rosenbluth method: simulations of 𝜃 polymers of chain length up to 1000000. Phys Rev E 56:3682

    Article  CAS  Google Scholar 

  38. Risken H (1984) The Fokker-Planck equation. Springer, Berlin

    Book  Google Scholar 

  39. Cao WP, Wang C, Sun LZ, Luo MB (2012) Effects of an attractive wall on the translocation of polymer under driving. J Phys: Condens Matter 24:325104

    Google Scholar 

  40. Milchev A (2011) Single-polymer dynamics under constraints: scaling theory and computer experiment. J Phys: Condens Matter 23:103101

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 11447184, and this work was also supported from Zhejiang Provincial Natural Science Foundation of China under Grants No. LQ14A040001 and No. LQ14A040004. W.P.C and Y.J.C thank the financial support by the physics from the most important among all the top priority disciplines of Zhejiang Province under Grant Nos. xkzwl14 and xkzw113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Ping Cao.

Ethics declarations

Conflict of interests

The authors declare that we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, QB., Ma, SH., Chen, YJ. et al. Numerical simulation on polymer translocation into crowded environment with nanoparticles. Colloid Polym Sci 294, 1351–1357 (2016). https://doi.org/10.1007/s00396-016-3891-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3891-x

Keywords

Navigation