Skip to main content
Log in

Facile synthesis of PS/RGO@AuNP composite particles as highly active and reusable catalyst for catalytic reduction of p-nitrophenol

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Herein, we successfully fabricate a ternary composite particle of polystyrene/reduced graphene oxide@gold nanoparticle (PS/RGO@AuNP) by hydrophobic interaction-driven self-assembly combined with a one-step reduction process, without involving any surface pretreatments of support microspheres in the whole process. The as-prepared PS/RGO@AuNP composite particles have been extensively characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, and inductively coupled plasma-optical emission spectroscopy. The results demonstrate that these ternary raspberry-like composite particles have uniform size and controllable surface morphology. In addition, the PS/RGO@AuNP composite particles have good dispersibility in water and, moreover, exhibit high catalytic activity and excellent reusability during the reduction of p-nitrophenol by sodium borohydride in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7

Similar content being viewed by others

References

  1. Mitschang F, Schmalz H, Agarwal S, Greiner A (2014) Tea-bag-like polymer nanoreactors filled with gold nanoparticles. Angew Chem Int Ed 53:4972–4975

    Article  CAS  Google Scholar 

  2. Lee JH, Mahmoud MA, Sitterle V, Sitterle J, Meredith JC (2009) Facile preparation of highly-scattering metal nanoparticle-coated polymer microbeads and their surface plasmon resonance. J Am Chem Soc 131:5048–5049

    Article  CAS  Google Scholar 

  3. Lee JH, Mahmoud MA, Sitterle V, Sitterle J, Meredith JC (2009) Highly scattering, surface-enhanced Raman scattering-active, metal nanoparticle-coated polymers prepared via combined swelling-heteroaggregation. Chem Mater 21:5654–5663

    Article  CAS  Google Scholar 

  4. Kim J, Lee JE, Lee J, Jang Y, Kim SW, An K, Yu HH, Hyeon T (2006) Generalized fabrication of multifunctional nanoparticle assemblies on silica spheres. Angew Chem Int Ed 45:4789–4793

    Article  CAS  Google Scholar 

  5. Kim J, Park S, Lee JE, Jin SM, Lee JH, Lee IS, Yang I, Kim JS, Kim SK, Cho MH, Hyeon T (2006) Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew Chem Int Ed 45:7754–7758

    Article  CAS  Google Scholar 

  6. Perez-Lorenzo M, Vaz B, Salgueirino V, Correa-Duarte MA (2013) Hollow-shelled nanoreactors endowed with high catalytic activity. Chem Eur J 19:12196–12211

    Article  CAS  Google Scholar 

  7. Li Y, Wang Z, Yang L, Gu H, Xue G (2011) Efficient coating of polystyrene microspheres with graphene nanosheets. Chem Commun 47:10722–10724

    Article  CAS  Google Scholar 

  8. Shi WL, Sahoo Y, Swihart MT, Prasad PN (2005) Gold nanoshells on polystyrene cores for control of surface plasmon resonance. Langmuir 21:1610–1617

    Article  CAS  Google Scholar 

  9. Lee JH, Kim DO, Song GS, Lee Y, Jung SB, Nam JD (2007) Direct metallization of gold nanoparticles on a polystyrene bead surface using cationic gold ligands. Macromol Rapid Commun 28:634–640

    Article  CAS  Google Scholar 

  10. Tamai T, Watanabe M, Hatanaka Y, Tsujiwaki H, Nishioka N, Matsukawa K (2008) Formation of metal nanoparticles on the surface of polymer particles incorporating polysilane by UV irradiation. Langmuir 24:14203–14208

    Article  CAS  Google Scholar 

  11. Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  12. Huang X, Qi XY, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41:666–686

    Article  CAS  Google Scholar 

  13. Mondal A, Jana NR (2014) Surfactant-free, stable noble metal-graphene nanocomposite as high performance electrocatalyst. ACS Catal 4:593–599

    Article  CAS  Google Scholar 

  14. Kim JM, Kim J (2012) Covalent decoration of graphene oxide with dendrimer-encapsulated nanoparticles for universal attachment of multiple nanoparticles on chemically converted graphene. Chem Commun 48:9233–9235

    Article  CAS  Google Scholar 

  15. Xu PC, Yu HT, Li XX (2012) In situ growth of noble metal nanoparticles on graphene oxide sheets and direct construction of functionalized porous-layered structure on gravimetric microsensors for chemical detection. Chem Commun 48:10784–10786

    Article  CAS  Google Scholar 

  16. Zhu CZ, Han L, Hu P, Dong SJ (2012) In situ loading of well-dispersed gold nanoparticles on two-dimensional graphene oxide/SiO2 composite nanosheets and their catalytic properties. Nanoscale 4:1641–1646

    Article  CAS  Google Scholar 

  17. Chen X, Wu G, Chen J, Chen X, Xie Z, Wang X (2011) Synthesis of "clean" and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J Am Chem Soc 133:3693–3695

    Article  CAS  Google Scholar 

  18. Yin H, Tang H, Wang D, Gao Y, Tang Z (2012) Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction. ACS Nano 6:8288–8297

    Article  CAS  Google Scholar 

  19. Li S, Guo S, Yang H, Gou G, Ren R, Li J, Dong Z, Jin J, Ma J (2014) Enhancing catalytic performance of Au catalysts by noncovalent functionalized graphene using functional ionic liquids. J Hazard Mater 270:11–17

    Article  CAS  Google Scholar 

  20. Shang L, Bian T, Zhang BH, Zhang DH, Wu LZ, Tung CH, Yin YD, Zhang TR (2014) Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions. Angew Chem Int Ed 53:250–254

    Article  CAS  Google Scholar 

  21. Li D, Mueller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  22. Yang S, Feng X, Ivanovici S, Muellen K (2010) Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage. Angew Chem Int Ed 49:8408–8411

    Article  CAS  Google Scholar 

  23. Liu JW, Zhang Q, Chen XW, Wang JH (2011) Surface assembly of graphene oxide nanosheets on SiO2 particles for the selective isolation of hemoglobin. Chem Eur J 17:4864–4870

    Article  CAS  Google Scholar 

  24. Li S, Qian T, Wu S, Shen J (2012) A facile, controllable fabrication of polystyrene/graphene core-shell microspheres and its application in high-performance electrocatalysis. Chem Commun 48:7997–7999

    Article  CAS  Google Scholar 

  25. Sheng S, Liu S, Zhang L, Chen G (2013) Facile assembly of graphene on anion exchange resin microspheres for electrochemical sensing and biosensing. Chem Asian J 8:191–197

    Article  CAS  Google Scholar 

  26. Lee JS, You KH, Park CB (2012) Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv Mater 24:1084–1088

    Article  CAS  Google Scholar 

  27. Chen Z, Liu S, Yang MQ, Xu YJ (2013) Synthesis of uniform CdS nanospheres/graphene hybrid nanocomposites and their application as visible light photocatalyst for selective reduction of nitro organics in water. ACS Appl Mater Interfaces 5:4309–4319

    Article  CAS  Google Scholar 

  28. Wu Q, Wang ZQ, Kong XF, Gu XD, Xue G (2008) A facile strategy for controlling the self-assembly of nanocomposite particles based on colloidal steric stabilization theory. Langmuir 24:7778–7784

    Article  CAS  Google Scholar 

  29. Li YX, Wang ZQ, Wang CJ, Pan YF, Gu H, Xue G (2012) Colloid thermodynamic effect as the universal driving force for fabricating various functional composite particles. Langmuir 28:12704–12710

    Article  CAS  Google Scholar 

  30. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia YY, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  31. Hunte CA, Sanders JKM (1990) The nature of π-π interactions. J Am Chem Soc 112:5525–5534

    Article  Google Scholar 

  32. Goncalves G, Marques P, Granadeiro CM, Nogueira HIS, Singh MK, Gracio J (2009) Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chem Mater 21:4796–4802

    Article  CAS  Google Scholar 

  33. Qian T, Wu S, Shen J (2013) Facilely prepared polypyrrole-reduced graphite oxide core-shell microspheres with high dispersibility for electrochemical detection of dopamine. Chem Commun 49:4610–4612

    Article  CAS  Google Scholar 

  34. Qian T, Wu S, Shen J (2013) A facilely prepared polypyrrole-reduced graphene oxide composite with a crumpled surface for high performance supercapacitor electrodes. J Mater Chem A 1:6539–6542

    Article  CAS  Google Scholar 

  35. Zeng T, Zhang XL, Ma YR, Niu HY, Cai YQ (2012) A novel Fe3O4-graphene-Au multifunctional nanocomposite: green synthesis and catalytic application. J Mater Chem 22:18658–18663

    Article  CAS  Google Scholar 

  36. Kong BS, Geng J, Jung HT (2009) Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions. Chem Commun 2174-2176.

  37. Jeong GH, Kim SH, Kim M, Choi D, Lee JH, Kim JH, Kim SW (2011) Direct synthesis of noble metal/graphene nanocomposites from graphite in water: photo-synthesis. Chem Commun 47:12236–12238

    Article  CAS  Google Scholar 

  38. Li J, Liu CY, Liu Y (2012) Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J Mater Chem 22:8426–8430

    Article  CAS  Google Scholar 

  39. Frens G (1973) Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nat Phys Sci 241:20–22

    Article  CAS  Google Scholar 

  40. Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh SK, Pal T (2007) Synthesis and size-selective catalysis by supported gold nanoparticles: study on heterogeneous and homogeneous catalytic process. J Phys Chem C 111:4596–4605

    Article  CAS  Google Scholar 

  41. Li H, Han L, Cooper-White JJ, Kim I (2012) A general and efficient method for decorating graphene sheets with metal nanoparticles based on the non-covalently functionalized graphene sheets with hyperbranched polymers. Nanoscale 4:1355–1361

    Article  CAS  Google Scholar 

  42. Choi Y, Bae HS, Seo E, Jang S, Park KH, Kim BS (2011) Hybrid gold nanoparticle-reduced graphene oxide nanosheets as active catalysts for highly efficient reduction of nitroarenes. J Mater Chem 21:15431–15436

    Article  CAS  Google Scholar 

  43. Lu W, Ning R, Qin X, Zhang Y, Chang G, Liu S, Luo Y, Sun X (2011) Synthesis of Au nanoparticles decorated graphene oxide nanosheets: noncovalent functionalization by TWEEN 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol. J Hazard Mater 197:320–326

    Article  CAS  Google Scholar 

  44. Han J, Wang L, Guo R (2012) Reactive polyaniline-supported sub-10 nm noble metal nanoparticles protected by a mesoporous silica shell: controllable synthesis and application as efficient recyclable catalysts. J Mater Chem 22:5932–5935

    Article  CAS  Google Scholar 

  45. Li Y, Wu Y, Gao Y, Sha S, Hao J, Cao G, Yang C (2013) A facile method to fabricate polystyrene/silver composite particles and their catalytic properties. RSC Adv 3:26361–26366

    Article  CAS  Google Scholar 

  46. Zhang P, Shao CL, Zhang ZY, Zhang MY, Mu JB, Guo ZC, Liu YC (2011) In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale 3:3357–3363

    Article  CAS  Google Scholar 

  47. Fang Y, Wang E (2013) Simple and direct synthesis of oxygenous carbon supported palladium nanoparticles with high catalytic activity. Nanoscale 5:1843–1848

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (no. 21204030, no. 51302109), Natural Science Foundation of Jiangsu Province of China (BK20130144), and MOE&SAFEA for the 111 Project (B13025) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunxing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Wang, L., Hu, Y. et al. Facile synthesis of PS/RGO@AuNP composite particles as highly active and reusable catalyst for catalytic reduction of p-nitrophenol. Colloid Polym Sci 294, 1165–1172 (2016). https://doi.org/10.1007/s00396-016-3875-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3875-x

Keywords

Navigation