Skip to main content
Log in

Effect of self-assemblies on the dynamics of phloroglucinol-based Belousov-Zhabotinsky reaction: analytical approach

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The response of the phloroglucinol-BrO3 -Ce3+-H2SO4 Belousov-Zhabotinsky (BZ) reaction to the addition of increasing amounts of some surfactants like anionic sodium dodecyl sulphate (SDS), cationic cetyltrimethylammonium bromide (CTAB), neutral TritonX-100 {4-(1,1,3,3-tetramethylbutyl) phenyl polyethylene glycol} and zwitterionic CHAPS{3[(3cholamidopropyl)dimethylammonio]-1-propanesulphonate} is monitored potentiometrically at 30 °C under stirred batch conditions. The presence of these surfactants influences the oscillatory dynamics to an extent that depends on the nature and concentration of the surfactant added. The experimental results suggest that the oscillatory behaviour of the BZ reaction in presence of surfactants owes their behaviour to the peculiar capability of organized surfactant assemblies by selectively partitioning the key species involved in the reaction and their electrostatic interaction with the charged micellar surface in case of ionic micelles. The perturbation effects in case of TritonX-100 have been ascribed to the reaction of alcoholic groups with key species involved in the reaction. For each surfactant, the evolution of oscillations has been found to be characteristic of the surfactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Karavaev AD, Kazakov VP, Tolstikov GA, Yakshin VV, Khokhlova NL (1986) J Anal Chem USSR 41:42

    CAS  Google Scholar 

  2. Echols RT, Carroll MK, Tyson JF (1995) Anal Proc 32:3

    Article  CAS  Google Scholar 

  3. Zhuravlev AI, Trainin VM (1990) J Biolumin Chemilumin 5:227

    Article  CAS  Google Scholar 

  4. Weight HR (1992) Angew Chem Int Ed Engl 31:355

    Article  Google Scholar 

  5. Kazakov VP, Karavaev AD, Vakhidova SR (1991) React Kinet Catal Lett 45:199

    Article  CAS  Google Scholar 

  6. Saigusa H (1989) Chem Phys Lett 157:251

    Article  CAS  Google Scholar 

  7. Karavaev AD, Kazakov VP (1987) React Kinet Catal Lett 34:15

    Article  CAS  Google Scholar 

  8. Yatrimiriskii KB, Strizhak PE, Ivaschenko TS (1993) Talanta 40:1227

    Article  Google Scholar 

  9. Yatrimiriskii KB, Tikhonova LP, Zakrevskaya LN, Lampeka YD, Kolchinskii AG (1982) React Kinet Catal Lett 21:381

    Article  Google Scholar 

  10. Hu G, Chen L, Zhanag J, Chen P, Wang W, Song J, Qui L, Song J, Hu L (2009) Cent Eur J Chem 7:291

    Article  CAS  Google Scholar 

  11. Belousov BP (1959) Sb Ref Radiats Med 145:1

    Google Scholar 

  12. Zaikin AN, Zhabotinsky AM (1970) Nature (London) 225:535

    Article  CAS  Google Scholar 

  13. Scott SK (1991) Chemical chaos. Oxford University Press, Oxford

    Google Scholar 

  14. Epstein IR (1995) Nature 374:321

    Article  CAS  Google Scholar 

  15. Field RJ, Koros E, Noyes RM (1972) J Am Chem Soc 94:8649

    Article  CAS  Google Scholar 

  16. Field RJ, Noyes RM (1974) J Chem Phys 60:1877

    Article  CAS  Google Scholar 

  17. Field RJ (1975) J Chem Phys 63:2289

    Article  CAS  Google Scholar 

  18. Turyani T, Gyorgyi L, Field RJ (1993) J Chem Phys 97:1931

    Article  Google Scholar 

  19. Gao Y, Forsterling HD (1995) J Phys Chem 99:8638

    Article  CAS  Google Scholar 

  20. Rustici M, Lombardo R, Turco Liveri ML (2001) Faraday Discuss 120:39

    Article  CAS  Google Scholar 

  21. Sciascia L, Lombardo R, Turco Liveri ML (2007) J Phys Chem B 111:1354

    Article  CAS  Google Scholar 

  22. Rossi F, Varsalova R, Turco Liveri ML (2008) Chem Phys Lett 463:378

    Article  CAS  Google Scholar 

  23. Eicke HF (1982) Chimia 36:241

    CAS  Google Scholar 

  24. Luisi PL, Majid LJ (1986) Crit Rev Biochem 20:409

    Article  CAS  Google Scholar 

  25. Balasubramanian D, Rodley GA (1991) J Phys Chem 95:5147

    Article  CAS  Google Scholar 

  26. Marselko J, Showalter K (1989) Nature 339:609

    Article  Google Scholar 

  27. Botre C, Lucarini C, Memoli A (1979) Bioelectrochem Bioenerg 6:451

    Article  CAS  Google Scholar 

  28. Chay TR, Keizer J (1983) Minimal model for membrane oscillations in the pancreatic β-cell. Biophys J 42:181–190

  29. Yoshida R, Onodera S, Yamaguchi T, Kokufuta E (1999) J Phys Chem A 103:8573

    Article  CAS  Google Scholar 

  30. Nakamura S, Maeda S, Hara Y, Hashimoto S (2009) J Phys Chem B 113:4609

    Article  Google Scholar 

  31. Fendler JH (1983) Membrane mimetic chemistry. Wiley, New York

    Google Scholar 

  32. Gull U, Peerzada GM, Ganaie NB, Dar NA (2013) Bull Chem Soc Jpn 86:266

    Article  CAS  Google Scholar 

  33. Israelachvilli JN (1995) Intermolecular and surfaces forces, 2nd edn. Academic, New York

    Google Scholar 

  34. Stark PE, Leff PD, Milheim SG, Kropf A (1984) J Phys Chem 88:6063

    Article  CAS  Google Scholar 

  35. Hjelmeland LJ, Nebert DW, Osborne JC (1983) Anal Biochem 130:72

    Article  CAS  Google Scholar 

  36. Moullik SP (1996) Curr Sci 71:368

    Google Scholar 

  37. Warr GG, Griesser FJ (1986) J Chem Soc Faraday Trans 82:1813

    Article  CAS  Google Scholar 

  38. Kratochvil JP, Colloid Interface J (1980) Sci 75:271

    Google Scholar 

  39. Bales BL, Almgren M (1993) J Phys Chem 99:15153

    Article  Google Scholar 

  40. Dutt GB (2005) Langmuir 21:10391

    Article  CAS  Google Scholar 

  41. Hoffmamm H, Oetter G, Schwander B (1987) Prog Colloidal Polym Sci 73:95

    Article  Google Scholar 

  42. Rharbi Y, Chen L, Winnik MA (2004) J Am Chem Soc 126:6025

    Article  CAS  Google Scholar 

  43. Seimiarczuk A, Ware WR, Liu YS (1993) J Phys Chem 97:8082

    Article  Google Scholar 

  44. Chattopadhyay A, Harikumar KG (1996) FEBS Lett 391:199

    Article  CAS  Google Scholar 

  45. Rawat SS, Mukherjee SS, Chatopadhyay A (1997) J Phys Chem B 101:1922

    Article  CAS  Google Scholar 

  46. Vanag VK, Epstein IR (2001) Science 294:835

    Article  CAS  Google Scholar 

  47. Yoshimoto M, Shirahama H, Kurosawa S, Naito M (2004) J Chem Phys 120:7067

    Article  CAS  Google Scholar 

  48. Vanag VK, Epstein IR (2001) Phys Rev Lett 87:228301

    Article  CAS  Google Scholar 

  49. Paul A (2005) J Phys Chem B 109:9639

    Article  CAS  Google Scholar 

  50. Bruce Lennox R, McClelland RA (1986) J Am Chem Soc 108:3771

    Article  Google Scholar 

  51. Cerichelli G, Grande C, Luchetti L, Mancini G, Bunton CA (1987) J Org Chem 52:5167

    Article  CAS  Google Scholar 

  52. Valente Artur JM, Burrows Hugh D, Cruz Sandra MA, Lobo Victor MM (2008) J Colloid Interface Sci 323:141

    Article  CAS  Google Scholar 

  53. Missel PJ, Mazer NA, Carey MC, Benedek GB (1984) Thermodynamics of the sphere-to-rod transition in alkyl sulfate micelles. In: Mittal KL, Fendler EJ (eds) From solution behaviour of surfactants: theoretical and applied aspects, vol 1. Plenum Press, New York, p 373

    Google Scholar 

  54. Quina FH, Nassar PM, Bonilha JBS, Bales BL (1995) J Phys Chem 99:17028

    Article  CAS  Google Scholar 

  55. Abe M, Ogino K (1993) Mixed surfactant systems. Marchel Dekker, New York

    Google Scholar 

  56. Dominguez A, Iglesias E (1998) Langmuir 14:2677

    Article  CAS  Google Scholar 

  57. Z. Khan, Raju, Kabir-ud-din, Colloids and Surfaces A: Physiochem. Eng. Aspects 2003, 225, 75.

  58. Forsterling HD, Lamberz HJ, Schreiber HZ (1983) Naturforsch 38:483

    Google Scholar 

  59. Pelle K, Wittmann M, Noszticzius Z, Lombardo R, Sibriziola C, Turco Liveri ML (2003) J Phys Chem A 107:2039

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to the University Grants Commission, India, for providing financial support and also to the Department of Chemistry, University of Kashmir, Srinagar, for providing infrastructural facilities to accomplish the work conveniently.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Peerzada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gull, U., Peerzada, G.M., Ganaie, N.B. et al. Effect of self-assemblies on the dynamics of phloroglucinol-based Belousov-Zhabotinsky reaction: analytical approach. Colloid Polym Sci 294, 421–431 (2016). https://doi.org/10.1007/s00396-015-3800-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3800-8

Keywords

Navigation