Skip to main content
Log in

Importance of gelation and crystallization for producing superhydrophobic surfaces from mixtures of hydrogenated castor oil and fatty acids

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Superhydrophobic surfaces were obtained easily from a mixed solution of hydrogenated castor oil (HCO) as an organogelator and a fatty acid as a crystalline compound by a casting method: a contact angle of 160° ± 2° and a sliding angle of 5° ± 1° were achieved on a surface prepared from the mixed solution of HCO and stearic acid (SA) at 6:4 weight ratios at 30 °C. The superhydrophobicity of the surface was attributable to a hierarchical structure which consisted of self-assembled nano-fibers of HCO and nano/micrometer-scale crystals of SA on hemispherical sub-structures having a diameter of several tens of micrometers. The hierarchical structure was formed under controlled conditions involving mixing ratios of HCO and a fatty acid, preparation temperatures, and fatty acid species. These results indicated that balance between gelation of HCO and crystallization of a fatty acid in the casting process was of importance in producing superhydrophobic surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Burton Z, Bhushan B (2006) Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces. Ultramicroscopy 106:709–719. doi:10.1016/j.ultramic.2005.10.007

    Article  CAS  Google Scholar 

  2. Ensikat HJ, Ditsche-Kuru P, Neinhuis C, Barthlott W (2011) Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein J Nanotechnol 2:152–161. doi:10.3762/bjnano.2.19

    Article  CAS  Google Scholar 

  3. Koch K, Bhushan B, Barthlott W (2009) Multifunctional surface structures of plants: an inspiration for biomimetics. Prog Mater Sci 54:137–178. doi:10.1016/j.pmatsci.2008.07.003

    Article  CAS  Google Scholar 

  4. Prathapan R, Venkatesan AG, Nair SV, Nair S (2014) A review on ‘self-cleaning and multifunctional materials’. J Mater Chem A 2:14773–14797. doi:10.1039/C4TA02542C

    Article  Google Scholar 

  5. Guo Z, Liu W, Su B-L (2011) Superhydrophobic surfaces: from natural to biomimetic to functional. J Colloid Interface Sci 353:335–355. doi:10.1016/j.jcis.2010.08.047

    Article  CAS  Google Scholar 

  6. Latthe SS, Gurav AB, Maruti CS, Vhatkar RS (2012) Recent progress in preparation of superhydrophobic surfaces: a review. JSEMAT 2:76–94. doi:10.4236/jsemat.2012.22014

    Article  CAS  Google Scholar 

  7. Qu M, He J, Zhang J (2010) Superhydrophobicity, learn from the lotus leaf. In: Mukherjee A (ed) Biomimetics learning from nature. InTech, India, pp 325–342. doi:10.5772/55321

    Google Scholar 

  8. Zhang Y-L, Xia H, Kim E, Sun H-B (2012) Recent developments in superhydrophobic surfaces with unique structural and functional properties. Soft Matter 8:11217–11231. doi:10.1039/c2sm26517f

    Article  CAS  Google Scholar 

  9. Xue C-H, Ma Z-JJ (2013) Long-lived superhydrophobic surfaces. Mater Chem A 1:4146–4161. doi:10.1039/C2TA01073A

    Article  CAS  Google Scholar 

  10. Meng Z, Yang W, Chen P, Wang W, Jia X, Xi K (2013) Preparation of disk-like particles with micro/nano hierarchical structures. J Colloid Interface Sci 408:1–5. doi:10.1016/j.jcis.2013.07.025

    Article  CAS  Google Scholar 

  11. Xue C-H, Jia S-T, Zhang J, Ma J-Z (2010) Large-area fabrication of superhydrophobic surfaces for practical applications: an overview. Sci Technol Adv Mater 11:033002. doi:10.1088/1468-6996/11/3/033002 (15pp)

    Article  Google Scholar 

  12. Tang X, Wang T, Yu F, Zhang X, Zhu Q, Pang L, Zhang G, Pei M (2013) Simple, robust and large-scale fabrication of superhydrophobic surfaces based on silica/polymer composites. RSC Adv 3:25670–25673. doi:10.1039/C3RA44502J

    Article  CAS  Google Scholar 

  13. Zhang BT, Liu BL, Deng XB, Cao SS, Hou XH, Chen HL (2008) Fabricating superhydrophobic surfaces by molecular accumulation of polysiloxane on the wool textile finishing. Colloid Polym Sci 286:453–457. doi:10.1007/s00396-007-1801-y

    Article  CAS  Google Scholar 

  14. Suzuki M, Hanabusa K (2010) Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly. Chem Soc Rev 39:455–463. doi:10.1039/B910604A

    Article  CAS  Google Scholar 

  15. George M, Weiss RG (2006) Molecular organogels. Soft matter comprised of Low-molecular-mass organic gelators and organic liquids. Acc Chem Res 39:489–497. doi:10.1021/ar0500923

    Article  CAS  Google Scholar 

  16. Yu G, Yan X, Han C, Huang F (2013) Characterization of supramolecular gels. Chem Soc Rev 42:6697–6722. doi:10.1039/C3CS60080G

    Article  CAS  Google Scholar 

  17. Yamanaka M, Sada K, Miyata M, Hanabusa K, Nakano K (2006) Construction of superhydrophobic surfaces by fibrous aggregation of perfluoroalkyl chain-containing organogelators. Chem Commun 21:2248–2250. doi:10.1039/B601485B

    Article  Google Scholar 

  18. Raghavanpillai A, Reinartz S, Hutchenson KW (2009) Hydrophobic and oleophobic surface modification using fluorinated bis-urea and bis-amide gelators. J Fluorine Chem 130:410–417. doi:10.1016/j.jfluchem.2009.01.006

    Article  CAS  Google Scholar 

  19. Raghavanpillai A, Franco VA (2012) Self-assembled fluorinated organogelators for surface modification. Appl Sci 2:175–191. doi:10.3390/app2010175

    Article  CAS  Google Scholar 

  20. Zhou Y, Yi T, Li T, Zhou Z, Li F, Huang W, Huang C (2006) Morphology and wettability tunable two-dimensional superstructure assembled by hydrogen bonds and hydrophobic interactions. Chem Mater 18:2974–2981. doi:10.1021/cm052805h

    Article  CAS  Google Scholar 

  21. Nakano K, Akita S, Yamanaka M (2014) Fabrication of superhydrophobic surfaces from mixtures of aluminum distearate and fatty acids via intermediate organogel formation. Colloid Polym Sci 292:1475–1478. doi:10.1007/s00396-014-3219-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Nakano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 3302 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakano, K., Ito, T., Onouchi, Y. et al. Importance of gelation and crystallization for producing superhydrophobic surfaces from mixtures of hydrogenated castor oil and fatty acids. Colloid Polym Sci 294, 69–75 (2016). https://doi.org/10.1007/s00396-015-3748-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3748-8

Keywords

Navigation