Skip to main content
Log in

Thermo- and pH-responsive fluorescence behaviors of sulfur-functionalized detonation nanodiamond-poly(N-isopropylacrylamide)

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Detonation nanodiamonds (DNDs) are emerging as bioimaging platforms due to their biocompability, small primary particle size, reactive surface, and stable fluorescence after modification. In this paper, a heteroatom engineering method is provided to fabricate the fluorescent DNDs through pyrolysis of dibenzyl disulfide. The quantum yield of these sulfur (S)-functionalized DNDs (SDNDs) increases with sulfur percentage. The solubility and stability of SDNDs in aqueous solution are also significantly increased due to the formation of hydrophilic sulfur groups on DND. Furthermore, these SDNDs are used to conjugate the stimuli-responsive poly(N-isopropylacrylamide) (PNIPAM) through the ‘graft from’ method. The conjugation demonstrated both pH- and thermo-responsive fluorescence behaviors, which shows promise to be used in ratiometric fluorescence sensing for the detection of intracellular pH and temperature values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang X, Hu W, Li J, Tao L, Wei Y (2012) A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. Toxicol Res 1:62–68

    Article  CAS  Google Scholar 

  2. Xing Y, Dai L (2009) Nanodiamonds for nanomedicine. Nanomedicine 4:207–218

    Article  CAS  Google Scholar 

  3. Su S, Wang S, Qiu J (2014) Biofunctionalization of Nanodiamonds through facile cytochrome P450 catalysis. Sci Adv Mater 6:203–208

    Article  CAS  Google Scholar 

  4. Perevedentseva E, Hong S-F, Huang K-J, Chiang I-T, Lee C-Y, Tseng Y-T, Cheng C-L (2013) Nanodiamond internalization in cells and the cell uptake mechanism. J Nanoparticle Res 15:1–12

    Google Scholar 

  5. Wang J, Wei J, Su S, Qiu J (2015) Novel fluorescence resonance energy transfer optical sensors for vitamin B 12 detection using thermally reduced carbon dots. New J Chem 39:501–507

    Article  CAS  Google Scholar 

  6. Qiu JWJ (2015) Luminescent Graphene quantum dots: as emerging fluorescent materials for biological application. Sci Adv Mater

  7. Yu S-J, Kang M-W, Chang H-C, Chen K-M, Yu Y-C (2005) Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc 127:17604–17605

    Article  CAS  Google Scholar 

  8. Fu C-C, Lee H-Y, Chen K, Lim T-S, Wu H-Y, Lin P-K, Wei P-K, Tsao P-H, Chang H-C, Fann W (2007) Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci 104:727–732

    Article  CAS  Google Scholar 

  9. Boudou J-P, Curmi PA, Jelezko F, Wrachtrup J, Aubert P, Sennour M, Balasubramanian G, Reuter R, Thorel A, Gaffet E (2009) High yield fabrication of fluorescent nanodiamonds. Nanotechnology 20:235602

    Article  Google Scholar 

  10. Havlik J, Petrakova V, Rehor I, Petrak V, Gulka M, Stursa J, Kucka J, Ralis J, Rendler T, Lee S-Y (2013) Boosting nanodiamond fluorescence: towards development of brighter probes. Nanoscale 5:3208–3211

    Article  CAS  Google Scholar 

  11. Chang Y-R, Lee H-Y, Chen K, Chang C-C, Tsai D-S, Fu C-C, Lim T-S, Tzeng Y-K, Fang C-Y, Han C-C (2008) Mass production and dynamic imaging of fluorescent nanodiamonds. Nat Nanotechnol 3:284–288

    Article  CAS  Google Scholar 

  12. Yamada K, Sawaoka A (1994) Very small spherical crystals of distorted diamond found in a detonation product of explosive/graphite mixtures and their formation mechanism. Carbon 32:665–673

    Article  CAS  Google Scholar 

  13. Puzyr’A, PurtovK, Shenderova O, Luo M, Brenner D, Bondar V (2007) The adsorption of aflatoxin B1 by detonation-synthesis nanodiamonds. In Doklady Biochemistry and Biophysics, Springer, pp 299–301

  14. Niu KY, Zheng HM, Li ZQ, Yang J, Sun J, Du XW (2011) Laser dispersion of detonation nanodiamonds. Angew Chem 123:4185–4188

    Article  Google Scholar 

  15. Mochalin VN, Gogotsi Y (2009) Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J Am Chem Soc 131:4594–4595

    Article  CAS  Google Scholar 

  16. Wang Z, Xu C, Liu C (2013) Surface modification and intrinsic green fluorescence emission of a detonation nanodiamond. J Mater Chem C 1:6630–6636

    Article  CAS  Google Scholar 

  17. Mitev DP, Townsend AT, Paull B, Nesterenko PN (2014) Microwave-assisted purification of detonation nanodiamond. Diam Relat Mater 48:37–46

    Article  CAS  Google Scholar 

  18. Osswald S, Yushin G, Mochalin V, Kucheyev SO, Gogotsi Y (2006) Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J Am Chem Soc 128:11635–11642

    Article  CAS  Google Scholar 

  19. Mitev DP, Townsend AT, Paull B, Nesterenko PN (2014) Screening of elemental impurities in commercial detonation nanodiamond using sector field inductively coupled plasma-mass spectrometry. J Mater Sci 49:3573–3591

    Article  CAS  Google Scholar 

  20. Mitev DP, Townsend AT, Paull B, Nesterenko PN (2013) Direct sector field ICP-MS determination of metal impurities in detonation nanodiamond. Carbon 60:326–334

    Article  CAS  Google Scholar 

  21. Krüger A, Kataoka F, Ozawa MAA, Fujino T, Suzuki Y, Aleksenskii A, Vul AY, Ōsawa E (2005) Unusually tight aggregation in detonation nanodiamond: identification and disintegration. Carbon 43:1722–1730

    Article  Google Scholar 

  22. Liang Y, Meinhardt T, Jarre G, Ozawa M, Vrdoljak P, Schöll A, Reinert F, Krueger A (2011) Deagglomeration and surface modification of thermally annealed nanoscale diamond. J Colloid Interface Sci 354:23–30

    Article  CAS  Google Scholar 

  23. Gota C, Okabe K, Funatsu T, Harada Y, Uchiyama S (2009) Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. J Am Chem Soc 131:2766–2767

    Article  CAS  Google Scholar 

  24. Zhang M, Rabiah NI, Ngo TH, Otanicar TP, Phelan PE, Swaminathan R, Dai LL (2014) Thermo-responsiveness and tunable optical properties of asymmetric polystyrene/PNIPAM-gold composite particles. J Colloid Interface Sci

  25. Li W, Wang J, Ren J, Qu X (2013) 3D Graphene oxide-polymer hydrogel: near-infrared light-triggered active scaffold for reversible cell capture and on-demand release. Adv Mater 25:6737–6743

    Article  CAS  Google Scholar 

  26. Zhu X, Yan C, Winnik F, Leckband D (2007) End-grafted low-molecular-weight PNIPAM does not collapse above the LCST. Langmuir 23:162–169

    Article  CAS  Google Scholar 

  27. Chen C-Y, Chen C-T (2011) A PNIPAM-based fluorescent nanothermometer with ratiometric readout. Chem Commun 47:994–996

    Article  CAS  Google Scholar 

  28. Guo Y, Yu X, Xue W, Huang S, Dong J, Wei L, Maroncelli M, Li H (2014) Synthesis, structures, and properties of a fluoranthene-based biphenol polymer as a fluorescent nano-thermometer. Chem Eng J 240:319–330

    Article  CAS  Google Scholar 

  29. Matsuo M, Sasaki N, Saga K, Kaneko T (2005) Cytotoxicity of flavonoids toward cultured normal human cells. Biol Pharm Bull 28:253–259

    Article  CAS  Google Scholar 

  30. Barras A, Lyskawa J, Szunerits S, Woisel P, Boukherroub R (2011) Direct functionalization of nanodiamond particles using dopamine derivatives. Langmuir 27:12451–12457

    Article  CAS  Google Scholar 

  31. Girard HA, Benayoun P, Blin C, Trouvé A, Gesset C, Arnault J-C, Bergonzo P (2013) Encapsulated nanodiamonds in smart microgels toward self-assembled diamond nanoarrays. Diam Relat Mater 33:32–37

    Article  CAS  Google Scholar 

  32. Dolenko TA, Burikov SA, Rosenholm JM, Shenderova OA, Vlasov II (2012) Diamond–water coupling effects in Raman and photoluminescence spectra of nanodiamond colloidal suspensions. J Phys Chem C 116:24314–24319

    Article  CAS  Google Scholar 

  33. Xiao Y, Wu J, Lin J-Y, Yue G, Lin J, Huang M, Lan Z, Fan L (2013) A dual function of high performance counter-electrode for stable quasi-solid-state dye-sensitized solar cells. J Power Sources

  34. Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682

    Article  CAS  Google Scholar 

  35. Plaza S, Mazurkiewicz B, Gruziński R (1994) Thermal decomposition of dibenzyl disulphide and its load-carrying mechanism. Wear 174:209–216

    Article  CAS  Google Scholar 

  36. Choi CH, Park SH, Woo SI (2011) Heteroatom doped carbons prepared by the pyrolysis of bio-derived amino acids as highly active catalysts for oxygen electro-reduction reactions. Green Chem 13:406–412

    Article  CAS  Google Scholar 

  37. Yan R, Zhang M, Zhang W, Liu S (2011) Temperature dependent synthesis of micro-and meso-porous silica employing the thermo-responsive polymer of poly (N-isopropylacrylamide) as structure-directing agent. J Sol-Gel Sci Technol 59:315–326

    Article  CAS  Google Scholar 

  38. Constantin M, Cristea M, Ascenzi P, Fundueanu G (2011) Lower critical solution temperature versus volume phase transition temperature in thermoresponsive drug delivery systems. Express Polym Lett 5:839–848

    Article  CAS  Google Scholar 

  39. Dong J, Weng J, Dai L (2012) The effect of graphene on the lower critical solution temperature of poly (N-isopropylacrylamide). Carbon

  40. Gao J, Frisken BJ (2003) Influence of reaction conditions on the synthesis of self-cross-linked N-isopropylacrylamide microgels. Langmuir 19:5217–5222

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the NSF funding support (grant number 1228127). The authors would like to thank the Center for Biotechnology and Genomics and the Imaging Center in Texas Tech for microplate reader measurement and TEM imaging. And we are much thankful to Dr. Brandon Weeks for the UV–vis spectra characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingjing Qiu or Shiren Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 368 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, S., Wei, J., Zhang, K. et al. Thermo- and pH-responsive fluorescence behaviors of sulfur-functionalized detonation nanodiamond-poly(N-isopropylacrylamide). Colloid Polym Sci 293, 1299–1305 (2015). https://doi.org/10.1007/s00396-015-3531-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3531-x

Keywords

Navigation