Skip to main content
Log in

Transport in droplet-hydrogel composites: response to external stimuli

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Determination of effective transport properties of droplet-hydrogel composites is essential for various applications. The transport of ions through a droplet-hydrogel composite subjected to an electric field is theoretically studied as an initial step toward quantifying the effective transport properties of droplet-hydrogel composites. A three-phase electrokinetic model is used to derive the microscale characteristics of the polyelectrolyte hydrogel, and the droplet is considered an incompressible Newtonian fluid. The droplet-hydrogel interface is modeled as a surface, which encloses the interior fluid. The surface has the thickness of zero and the electrostatic potential ζ. Standard averaging procedures are used to derive the effective governing equation for the current density that captures the macroscopic behavior. The results show that the polymer boundary condition has a modulating impact on the electrical conductivity, and the influence of the boundary condition decreases as the interior fluid viscosity increases. At the limit of the polymer’s no-slip boundary condition, the interior and exterior fluids’ viscosities, Brinkman screening length, and ionic strength have a significant impact on the conductivity. Interestingly, it should be possible to determine the ζ-potential for a droplet-hydrogel composite from measurements of the electrical conductivity with the aid of the formula derived for the conductivity. Finally, the theoretical study for determining the response of droplet-hydrogel composites to an imposed pressure gradient is undertaken, and it is found that the polymer boundary condition has a modulating impact on the response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kremmer T, Boross L (1979) Gel chromatography: theory, methodology, applications Wiley-Interscience publication. Wiley

  2. Osada Y, Gong JP, Tanaka Y (2004) Polymer gels. J Macromol Sci, Polym Rev 44(1):87–112

    Article  Google Scholar 

  3. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  4. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliver Rev 53(3):321–339

    Article  CAS  Google Scholar 

  5. Brandl F, Sommer F, Goepferich A (2007) Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials 28:134–146

    Article  CAS  Google Scholar 

  6. Bar-Cohen Y (2007) Electroactive polymers as an enabling materials technology. Proc IMechE Part G: J Aerospace Eng 221:553–564

    Article  CAS  Google Scholar 

  7. Calvert P (2004) Electroactive polymer (EAP) actuators as artificial muscles—reality, potential and challenges chapter 5 2nd edition. SPIE Press, Bellingham, pp 151–170

    Book  Google Scholar 

  8. Eddington DT, Beebe DJ (2004) Flow control with hydrogels. Adv Drug Delivery Rev 56(2):199–210

    Article  CAS  Google Scholar 

  9. Kim D, Beebe DJ (2007) Hydrogel-based reconfigurable components for microfluidic devices. Lab Chip 7(2):193–198

    Article  CAS  Google Scholar 

  10. Dhopeshwarkar R, Sun L, Crooks RM (2005) Electrokinetic concentration enrichment within a microfluidic microplug, device using a hydrogel. Lab Chip 5:1148–1154

    Article  CAS  Google Scholar 

  11. Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo B-H (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404(2):588– 590

    Article  CAS  Google Scholar 

  12. Matos MA, White LA , Tilton RD (2006) Electroosmotically enhanced mass transfer through polyacrylamide gels. J Colloid Interface Sci 300:429–436

    Article  CAS  Google Scholar 

  13. Matos MA, White LR, Tilton RD (2008) Enhanced mixing in polyacrylamide gels containing embedded silica pumps, nanoparticles as internal electroosmotic. Colloid Surf B Biointerf 61(2):262–269

    Article  CAS  Google Scholar 

  14. Huang G, Zhang X, Xiao Z, Zhang Q, Zhou J, Xu F, Lu TJ (2012) Cell-encapsulating microfluidic stability, hydrogels with enhanced mechanical. Soft Matter 8:10687–10694

    Article  CAS  Google Scholar 

  15. Komarova GA, Starodubtsev SG, Lozinsky VV, Nasimova IR, Khokhlov AR (2013) Intelligent gels and cryogels with embedded emulsions of various oils. J Appl Polym Sci 127(4):2703– 2709

    Article  CAS  Google Scholar 

  16. Sala G, van Vliet T, Cohen Stuart MA, van Aken GA, van de Velde F (2009) Deformation and fracture of emulsion-filled gels: effect of oil content and deformation speed. Food Hydrocolloid 23(5):1381–1393

    Article  CAS  Google Scholar 

  17. Shingel K, Roberge C, Zabeida O, Robert M, Klemberg-Sapieha JE (2009) Solid emulsion gel as a novel construct for topical applications: synthesis, morphology and mechanical properties. J Mater Sci - Mater Med 20:681–689

    Article  CAS  Google Scholar 

  18. Sala G, van Aken GA, Stuart MAC, van de Velde F (2007) Effect of droplet-matrix interactions on large deformation properties of emulsion-filled gels. J Texture Stud 38(4):511–535

    Article  Google Scholar 

  19. Chojnicka A, Sala G, de Kruif CG, van de Velde F (2009) The interactions between oil droplets and gel matrix affect the lubrication properties of sheared emulsion-filled gels. Food Hydrocolloid 23(3):1038–1046

    Article  CAS  Google Scholar 

  20. Mohammadi A (2013) Electric-field-induced response of a droplet embedded in a polyelectrolyte gel. Phys Fluids 25(8):082004

    Article  Google Scholar 

  21. Mohammadi A (2014) Electrokinetic mixing and displacement of charged droplets in hydrogels. Trans Porous Med 104(3):469– 499

    Article  CAS  Google Scholar 

  22. Mizuno D, Kimura Y, Hayakawa R (2001) Electrophoretic microrheology in a dilute lamellar phase of a nonionic surfactant. Phys Rev Lett 87 (8):088104

    Article  CAS  Google Scholar 

  23. Mohammadi A (2011) Dynamics of colloidal inclusions in hydrogels. Ph.D. thesis, chapter 5, McGill university

  24. Bradshaw-Hajek BH, Miklavcic SJ, White LR (2008) Frequency-dependent electrical conductivity of concentrated dispersions of spherical colloidal particles. Langmuir 24(9):4512– 4522

    Article  CAS  Google Scholar 

  25. Bordi F, Cametti C, Chen SH, Rouch J, Sciortino F, Tartaglia P (1996) The static electrical conductivity of water-in-oil microemulsions below percolation threshold. Physica A 231(1–3):161–167

    Article  CAS  Google Scholar 

  26. Zhao H, Zhai S (2013) The influence of dielectric decrement on electrokinetics. J Fluid Mech 724:69–94. 6

    Article  CAS  Google Scholar 

  27. Stout RF, Khair AS (2014) A continuum approach to predicting electrophoretic mobility reversals. J Fluid Mech 752(8)

  28. Kosto KB, Deen WM (2004) Diffusivities of macromolecules in composite hydrogels. AIChE J 50(11):2648–2658

    Article  CAS  Google Scholar 

  29. Amsden B (2001) Diffusion in polyelectrolyte hydrogels: application of an obstruction-scaling model to solute diffusion in calcium alginate. Macromolecules 34(5):1430–1435

    Article  CAS  Google Scholar 

  30. Bandopadhyay A, Hossain SS, Chakraborty S (2014) Ionic size dependent electroviscous effects in ion-selective nanopores. Langmuir 30(24):7251–7258

    Article  CAS  Google Scholar 

  31. Darwish MIM, van der Maarel JRC, Zitha PLJ (2004) Ionic transport in polyelectrolyte gels: model and nmr investigations. Macromolecules 37(6):2307–2312

    Article  CAS  Google Scholar 

  32. O’Brien RW (1981) The electrical conductivity of a dilute suspension of charged particles. J Colloid Interface Sci 81(1):234–248

    Article  Google Scholar 

  33. Cox RG (1969) The deformation of a drop in a general time-dependent fluid flow. J Fluid Mech 37:601–623

    Article  Google Scholar 

  34. Gary Leal L (2007) Advanced transport phenomena: fluid mechanics and convective transport processes. Cambridge University Press, New York

    Book  Google Scholar 

  35. O’Brien RW, White LR (1978) Electrophoretic mobility of a spherical colloidal particle. J Chem Soc, Faraday Trans 2 74:1607–1626

    Article  Google Scholar 

  36. Mangelsdorf CS, White LR (1993) Low-zeta-potential analytic solution for the electrophoretic mobility of a spherical colloidal particle in an oscillating electric field. J Colloid Interface Sci 160(2):275–287

    Article  CAS  Google Scholar 

  37. Ohshima H, Healy TW, White LR (1984) Approximate analytic expressions for the electrophoretic mobility of spherical colloidal particles and the conductivity of their dilute suspensions. J Chem Soc Faraday Trans 2 80:1643

    Article  CAS  Google Scholar 

  38. Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. Dover, New York

    Google Scholar 

  39. Sasaki S (2006) Elastic properties of swollen polyelectrolyte gels in aqueous salt solutions. J Chem Phys 124:094903

    Article  Google Scholar 

  40. Sasaki SH, Ojima H, Yataki K, Maeda H (1995) Flory exponent of the chain of the expanding polyion gel. J Chem Phys 102(24):9694–9699

    Article  CAS  Google Scholar 

  41. Gundogan N, Melekaslan D, Okay O (2002) Rubber elasticity of poly(n-isopropylacrylamide) gels at various charge densities. Macromolecules 35:5616–5622

    Article  CAS  Google Scholar 

  42. Okay O, Durmaz S (2002) Charge density dependence of elastic modulus of strong polyelectrolyte hydrogels. Polymer 43:1215–1221

    Article  CAS  Google Scholar 

  43. Raphael E (1990) Annealed and quenched polyelectrolytes. Europhys Lett 13(7):623–628

    Article  CAS  Google Scholar 

  44. Guo X, Ballauff M (2001) Spherical polyelectrolyte brushes: Comparison between annealed and quenched brushes. Phys Rev E 64(5):051406

    Article  CAS  Google Scholar 

  45. Fiumefreddo A, Utz M (2010) Bulk streaming potential in poly(acrylic acid)/poly(acrylamide) hydrogels. Macromolecules 6(6):2401–2420

    Google Scholar 

  46. DeLacey EHB, White LR (1981) Dielectric response and conductivity of dilute suspensions of colloidal particles. J Chem Soc, Faraday Trans 2 77(11):2007–2039

    Article  CAS  Google Scholar 

  47. Ahualli S, Delgado A, Miklavcic SJ, White LR (2006) Dynamic electrophoretic mobility of concentrated dispersions of spherical colloidal particles. on the consistent use of the cell model. Langmuir 22(16):7041–7051

    Article  CAS  Google Scholar 

  48. Bradshaw-Hajek BH, Miklavcic SJ, White LR (2010) High-frequency behavior of the dynamic mobility and dielectric response of concentrated colloidal dispersions. Langmuir 26(3):1656–1665

    Article  CAS  Google Scholar 

  49. Bradshaw-Hajek BH, Miklavcic SJ, White LR (2010) The actual dielectric response function for a colloidal suspension of spherical particles. Langmuir 26(11):7875–7884

    Article  CAS  Google Scholar 

  50. O’Brien RW, Perrins WT (1984) The electrical conductivity of a porous plug. J Colloid Interface Sci 99(1):20–31

    Article  Google Scholar 

  51. Looker JR, Carnie SL (2006) Homogenization of the ionic transport equations in periodic porous media. Trans Porous Med 65:107–131

    Article  Google Scholar 

  52. Simhadri JJ, Stretz HA, Oyanader M, Arce PE (2010) Role of nanocomposite hydrogel morphology in the electrophoretic separation of biomolecules: a review. Ind Eng Chem Res 49(23):11866–11877

    Article  CAS  Google Scholar 

  53. Russel WB, Schowalter WR, Saville DA (1989) Colloidal dispersions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  54. Lin KL, Osseo-Asare K (1984) Electrophoretic mobility of oil drops in the presence of solvent extraction reagents. Solvent Extr Ion Exch 2(3):365–380

    Article  CAS  Google Scholar 

  55. Beaman DK, Robertson EJ, Richmond GL (2012) Ordered polyelectrolyte assembly at the oil-water interface. Proc Natl Acad Sci 109(9):3226–3231

    Article  CAS  Google Scholar 

  56. Leunissen ME, van Blaaderen A, Hollingsworth AD, Sullivan MT, Chaikin PM (2007) Electrostatics at the oil-water interface, stability, and order in emulsions and colloids. Proc Natl Acad Sci 104(8):2585–2590

    Article  CAS  Google Scholar 

  57. Bhosale PS, Chun J, Berg JC (2011) Electroacoustics of particles dispersed in polymer gel. Langmuir 27(12):7376–7379

    Article  CAS  Google Scholar 

  58. Bhosale PS, Berg JC (2010) Acoustic spectroscopy of colloids dispersed in a polymer gel system. Langmuir 26(18):14423–14426

    Article  CAS  Google Scholar 

  59. Xie G, Okada T (1995) Water transport behavior in nafion 117 membranes. J Electrochem Soc 142(9):3057–3062

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author would like to appreciate the Sharif university of technology research council for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliasghar Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, A. Transport in droplet-hydrogel composites: response to external stimuli. Colloid Polym Sci 293, 941–962 (2015). https://doi.org/10.1007/s00396-014-3473-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3473-8

Keywords

Navigation