Skip to main content
Log in

LCST and UCST double-phase transitions of poly(N-isopropylacrylamide-co-2-acrylamidoglycolic acid)/poly(dimethylaminoethyl methacrylate) complex

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The phase transition temperatures (T p) of poly(N-isopropylacrylamide-co-2-acrylamidoglycolic acid) (P(NIPAAm-co-AmGc)) and P(NIPAAm-co-AmGc)/poly(dimethylaminoethyl methacrylate) (PDMAEMA) complex were monitored to investigate the effects of pH, comonomer composition, and complex formation. P(NIPAAm-co-AmGc) was synthesized via free radical polymerization with AmGc molar fractions of 0.04, 0.08, 0.16, and 0.25; the corresponding ratios of dimethylaminoethyl methacrylate (DMAEMA) and AmGc in the P(NIPAAm-co-AmGc)-16/PDMAEMA complex were 0.3, 0.7, 1.0, 2.0, and 4.0, respectively. Our results indicated that the T p of P(NIPAAm-co-AmGc) increased as the mole fraction of AmGc increased and was higher at pH 4 than at pH 3 and pH 7. For the P(NIPAAm-co-AmGc)-16/PDMAEMA complex, the lower critical solution temperature (LCST) was observed from 23 to 48 °C, and the upper critical solution temperature (UCST) was detected above 63 °C at pH values of 3, 4, and 7. The aggregation rate of the polymer chains was determined from the slope of the turbidity change in a plot of LCST versus temperature. As the T p was lower, aggregation occurred faster in P(NIPAAm-co-AmGc)-16 but slower in the P(NIPAAm-co-AmGc)-16/PDMAEMA complex at pH 7. Aggregation was not observed during the cooling scan or, at least, was less evident than in the heating scan because the hydrophobic attractive interactions during the cooling scan were not sufficient to offset the electrostatic repulsion between ionic groups at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wei H, Cheng S, Zhang X, Zhou R (2009) Prog Polym Sci 34:893

    Article  CAS  Google Scholar 

  2. Kawaguchi H, Fujimoto K, Mizuhara Y (1992) Colloid Polym Sci 270:53

    Article  CAS  Google Scholar 

  3. Ruel-Gariepy E, Leroux J (2004) Eur J Pharm Biopharm 58:409

    Article  CAS  Google Scholar 

  4. Schmaljohann D (2006) Adv Drug Deliv Rev 58:1655

    Article  CAS  Google Scholar 

  5. Pelton R (2000) Adv Colloid Interf 85:1

    Article  CAS  Google Scholar 

  6. Peppas NA, Huang MT, Lugo JH, Zhang J (2000) Annu Rev Biomed Eng 2:9

    Article  CAS  Google Scholar 

  7. Savas H, Guven O (2001) Int J Pharm 224:151

    Article  CAS  Google Scholar 

  8. Feil H, Bae YH, Feijen Y, Kim SW (1992) Macromolecules 25:5528

    Article  CAS  Google Scholar 

  9. Lu T, Vesterinen E, Tenhu H (1998) Polymer 39:641

    Article  CAS  Google Scholar 

  10. Qui Y, Park K (2001) Adv Drug Deliv Rev 53:321

    Article  Google Scholar 

  11. Bates FS (1991) Science 251:898

    Article  CAS  Google Scholar 

  12. Mok MM, Ellison CJ, Torkelson JM (2011) Macromolecules 44:6220

    Article  CAS  Google Scholar 

  13. Georges MK, Veregin RPN, Kazmaier PM, Hamer GK (1993) Macromolecules 26:2987

    Article  CAS  Google Scholar 

  14. Beginn U (2008) Colloid Polym Sci 286:1465

    Article  CAS  Google Scholar 

  15. Lefebvre MD, De la Cruz MO, Shull KR (2004) Macromolecules 37:1118

    Article  CAS  Google Scholar 

  16. Jiang R, Jin QH, Li BH, Ding DT, Wickham RA, Shi AC (2008) Macromolecules 41:5457

    Article  CAS  Google Scholar 

  17. Lee ES, Shin HJ, Na K, Bae YH (2003) J Control Release 90:363

    Article  CAS  Google Scholar 

  18. Hilt JZ, Gupta AK, Rashid B, Peppas NA (2003) Biomed Microdevices 5:177

    Article  CAS  Google Scholar 

  19. Peppas LB, Peppas NA (1990) Biomaterials 11:635

    Article  Google Scholar 

  20. Vakkalanka SK, Peppas NA (1996) Polym Bull 36:221

    Article  CAS  Google Scholar 

  21. Zavgorodnya O, Serpe MJ (2011) Colloid Polym Sci 289:591

    Article  CAS  Google Scholar 

  22. Zhang N, Liu M, Shen Y, Chen J, Dai L, Gao C (2011) J Mater Sci 46:1523

    Article  CAS  Google Scholar 

  23. Schild HG, Tirrell DA (1990) J Phys Chem 94:4352

    Article  CAS  Google Scholar 

  24. Fujishige S, Kubota K, Ando I (1989) J Phys Chem 93:3311

    Article  CAS  Google Scholar 

  25. Djokpe E, Vogt W (2001) Macromol Chem Phys 202:750

    Article  CAS  Google Scholar 

  26. Butun V, Armes SP, Billingham NC (2001) Macromolecules 34:1148

    Article  Google Scholar 

  27. Han X, Zhang X, Yin Q, Hu J, Liu H, Hu Y (2013) Macromol Rapid Commun 34:574

    Article  CAS  Google Scholar 

  28. Lowe AB, McCormick CL (2002) Chem Rev 102:4177

    Article  CAS  Google Scholar 

  29. Plamper FA, Ruppel M, Schmalz A, Borisov O, Ballauff M, Muller AHE (2007) Macromolecules 40:8361

    Article  CAS  Google Scholar 

  30. Plamper FA, Schmalz A, Ballauff M, Muller AHE (2007) J Am Chem Soc 129:14538

    Article  CAS  Google Scholar 

  31. Plamper FA, McKee JR, Laukkanen A, Nykanen A, Walther A, Ruokolainen J, Aseyev V, Tenhu H (2009) Soft Matter 5:1812

    Article  CAS  Google Scholar 

  32. Yuan W, Zou H, Guo W, Wang A, Ren J (2012) J Mater Chem 22:24783

    Article  CAS  Google Scholar 

  33. Yancheva E, Paneva D, Maximova V, Mespouille L, Dubois P, Manolova N, Rashkov I (2007) Biomacromolecules 8:976

    Article  CAS  Google Scholar 

  34. Rivas BL, Quilodran B, Quiroz E (2003) J Appl Polym Sci 88:2614

    Article  CAS  Google Scholar 

  35. Arotcarena M, Heise B, Ishaya S, Laschewsky A (2002) J Am Chem Soc 124:3787

    Article  CAS  Google Scholar 

  36. He J, Yan B, Tremblay L, Zhao Y (2011) Langmuir 27:436

    Article  CAS  Google Scholar 

  37. Wu G, Chen S, Zhan Q, Wang Y (2011) Macromolecules 44:999

    Article  CAS  Google Scholar 

  38. Bruice TC, Bradbury WC (1965) J Am Chem Soc 5:4852

    Google Scholar 

  39. Nagasawa M, Murase M, Kondo K (1965) J Phys Chem 69:4005

    Article  CAS  Google Scholar 

  40. Kim B, Hong D, Chang WV (2014) J Appl Polym Sci 131:41026

    Google Scholar 

  41. Sudre G, Tran Y, Creton C, Hourdet D (2012) Polymer 53:379

    Article  CAS  Google Scholar 

  42. Pozo-Gonzalo C, Virgillo C, Yan Y, Howlett PC, Byrne N, MacFarlane DR, Forsyth M (2014) Electrochem Commun 38:24

    Article  CAS  Google Scholar 

  43. Hofmeister F (1888) Arch Exp Pathol Pharmakol 24:246

    Article  Google Scholar 

  44. Robinson DR, Jencks WP (1965) J Am Chem Soc 87:2470

    Article  CAS  Google Scholar 

  45. Yamauchi H, Maeda Y (2007) J Phys Chem 111:12964

    Article  CAS  Google Scholar 

  46. Casolaro M (1995) Macromolecules 28:2351

    Article  CAS  Google Scholar 

  47. Casolaro M (1997) Polymer 38:4215

    Article  CAS  Google Scholar 

  48. Xiong Z, Peng B, Han X, Peng C, Liu H, Hu Y (2011) J Colloid Interface Sci 356:557

    Article  CAS  Google Scholar 

  49. Costa ROR, Freitas RFS (2002) Polymer 43:5879

    Article  CAS  Google Scholar 

  50. Franks F (1968) Effects of solutes on the hydrogen bonding in water. In: Covington AK, Jones P (eds) Hydrogen-bonded solvent systems. Taylor & Francis, London, p 31

    Google Scholar 

  51. Lopez-Perez PM, da Silva RMP, Pashkuleva I, Parra F, Reis RL, San Roman J (2010) Langmuir 26:5934

    Article  CAS  Google Scholar 

  52. Cho SH, Jhon MS, Yuk SH, Lee HB (1997) J Polym Sci B Polym Phys 35:595

    Article  CAS  Google Scholar 

  53. Yoo MK, Sung YK, Cho CS, Lee YM (1997) Polymer 38:2759

    Article  CAS  Google Scholar 

  54. Bhargava P, Tu YF, Zheng JX, Xiong HM, Quirk RP, Cheng SZD (2007) J Am Chem Soc 129:1113

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byungsoo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B., Hong, D. & Chang, W.V. LCST and UCST double-phase transitions of poly(N-isopropylacrylamide-co-2-acrylamidoglycolic acid)/poly(dimethylaminoethyl methacrylate) complex. Colloid Polym Sci 293, 699–708 (2015). https://doi.org/10.1007/s00396-014-3452-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3452-0

Keywords

Navigation