Skip to main content
Log in

Trapped rainbow techniques for spectroscopy on a chip and fluorescence enhancement

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on the experimental demonstration of the broadband “trapped rainbow” in the visible range using arrays of adiabatically tapered optical nanowaveguides. Being a distinct case of the slow light phenomenon, the trapped rainbow effect could be applied to optical signal processing, sensing in such applications as spectroscopy on a chip, and to providing enhanced light-matter interactions. As an example of the latter applications, we have fabricated a large area array of tapered nanowaveguides, which exhibit broadband “trapped rainbow” effect. Considerable fluorescence enhancement due to slow light behavior in the array has been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://www.suss-microoptics.com.

References

  1. K.L. Tsakmakidis, A.D. Boardman, O. Hess, Nature 450, 397 (2007)

    Article  ADS  Google Scholar 

  2. M.I. Stockman, Phys. Rev. Lett. 93, 137404 (2004)

    Article  ADS  Google Scholar 

  3. Q. Gan, Y.J. Ding, F.J. Bartoli, Phys. Rev. Lett. 102, 056801 (2009)

    Article  ADS  Google Scholar 

  4. L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Nature 397, 594 (1999)

    Article  ADS  Google Scholar 

  5. Y.A. Vlasov, M. O’Boyle, H.F. Hamann, S.J. McNab, Nature 438, 65 (2005)

    Article  ADS  Google Scholar 

  6. I.I. Smolyaninov, V.N. Smolyaninova, A.V. Kildishev, V.M. Shalaev, Phys. Rev. Lett. 103, 213901 (2009)

    Article  ADS  Google Scholar 

  7. V.N. Smolyaninova, I.I. Smolyaninov, A.V. Kildishev, V.M. Shalaev, Appl. Phys. Lett. 96, 211121 (2010)

    Article  ADS  Google Scholar 

  8. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Reed, Oxford, 1988)

    Google Scholar 

  9. X.P. Zhao, W. Luo, J.X. Huang, Q.H. Fu, K. Song, X.C. Cheng, C.R. Luo, Appl. Phys. Lett. 95, 071111 (2009)

    Article  ADS  Google Scholar 

  10. J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, B. Lee, Opt. Express 18, 598 (2010)

    Article  ADS  Google Scholar 

  11. Q. Bai, J. Chen, N.-H. Shen, C. Cheng, H.-T. Wang, Opt. Express 18, 2106 (2010)

    Article  ADS  Google Scholar 

  12. J.B. Pendry, D. Schurig, D.R. Smith, Science 312, 1780 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. A. Pokhriyal, M. Lu, C.S. Huang, S. Schulz, B.T. Cunningham, Appl. Phys. Lett. 97, 121108 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

V. Smolyaninova acknowledges support of this research by the NSF grants DMR-0348939 and DMR-1104676; V. Shalaev and A. Kildishev acknowledge support by ARO-MURI award 50342-PH-MUR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Smolyaninova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smolyaninova, V.N., Smolyaninov, I.I., Kildishev, A.V. et al. Trapped rainbow techniques for spectroscopy on a chip and fluorescence enhancement. Appl. Phys. B 106, 577–581 (2012). https://doi.org/10.1007/s00340-011-4856-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4856-x

Keywords

Navigation