Skip to main content
Log in

Effect of different electrolyte concentrations on TiO2 anodized nanotubes physical properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Uniform multilayered titanium oxide (TiO2) nanotubes are synthesized using three-step anodization process to investigate an effect of different electrolyte concentrations on their physical properties such as structural, morphological and optical properties. X-ray diffractometer analysis together with selected area electron diffraction pattern revealed the crystalized structure of the synthesized tubes. To study the morphology of the tubes, scanning electron microscopy was used, which showed that the wall thicknesses and the diameters of the tubes affected by electrolyte solution concentrations. Moreover, optical studies performed by diffuse reflection spectra suggested that band gap of the TiO2 nanotubes did not change significantly with the electrolyte solution concentrations. Optimum electrolyte solution concentration was obtained to synthesize the uniform crystalized TiO2 nanotubes with suitable diameter, wall thickness and optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Pathak, T. Wagner, T. Adhikari, J.M. Nunzi, Synth. Met. 199, 57 (2015)

    Article  Google Scholar 

  2. D. Pathak, T. Wagner, T. Adhikari, J.M. Nunzi, Synth. Met. 200, 102 (2015)

    Article  Google Scholar 

  3. D. Pathak, R.K. Bedi, D. Kaur, J. Korean. Phys. Soc. 56, 3 (2010)

    Google Scholar 

  4. D. Pathak, R.K. Bedi, D. Kaur, J. Korean. Phys. Soc. 57, 474 (2010)

    Article  ADS  Google Scholar 

  5. N. Serpone, E. Pelizzetti, Photocatalysis: Fundamentals and Applications (Wiley, New York, 1989)

    Google Scholar 

  6. M. Schiavello, H. Dordrecht, Photoelectrochemistry Photocatalysis and Photoreactors: Fundamentals and Developments (Kluwer Academic Publishers, Boston, 1985)

    Book  Google Scholar 

  7. A.L. Linsebigler, G. Lu, J.T. Yates, Chem. Rev. 95, 735 (1995)

    Article  Google Scholar 

  8. O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, E.C. Dickey, C.A. Grimes, Adv. Mater. 15, 624 (2003)

    Article  Google Scholar 

  9. G.K. Mor, M.A. Carvalho, O.K. Varghese, M.V. Pishko, C.A. Grimes, J. Mater. Res. 19, 628 (2004)

    Article  ADS  Google Scholar 

  10. O.K. Varghese, G.K. Mor, C.A. Grimes, M. Paulose, N. Mukherjee, J. Nanosci. Nanotechnol. 4, 733 (2004)

    Article  Google Scholar 

  11. M. Paulose, O.K. Varghese, G.K. Mor, C.A. Grimes, K.G. Ong, J. Nanotechnol. 17, 1446 (2006)

    Article  ADS  Google Scholar 

  12. J. Park, S. Bauer, K. von der Mark, P. Schmuki, Nano Lett. 7, 1686 (2007)

    Article  ADS  Google Scholar 

  13. G.K. Mor, O.K. Varghese, M. Paulose, C.A. Grimes, Sens. Lett. 1, 42 (2003)

    Article  Google Scholar 

  14. C.K. Varghese, M. Paulose, K. Shankar, G.K. Mor, C.A. Grimes, J. Nanosci. Nanotechnol. 5, 1158 (2005)

    Article  Google Scholar 

  15. M. Adachi, Y. Murata, M. Harada, Chem. Lett. 8, 942 (2000)

    Article  Google Scholar 

  16. S.Z. Chu, S. Inoue, K. Wada, D. Li, H. Haneda, S. Awatsu, J. Phys. Chem. B 107, 6586 (2003)

    Article  Google Scholar 

  17. B. O’Regan, M. Gratzel, Nature 353, 737 (1991)

    Article  ADS  Google Scholar 

  18. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Nano Lett. 6, 215 (2006)

    Article  ADS  Google Scholar 

  19. Y.J. Ji, M.D. Zhang, J.H. Cui, K.C. Lin, H. Zheng, J.J. Zhu, A.C.S. Samia, Nano. Energy. 1, 769 (2012)

    Article  Google Scholar 

  20. L. Sun, S. Zhang, X. Sun, X. He, J. Nanosci. Nanotechnol. 7, 4551 (2010)

    Article  Google Scholar 

  21. C.C. Chen, H.W. Chung, C.H. Chen, H.P. Lu, C.M. Lan, S.F. Chen, L.V. Luo, C.S. Hung, E.W.G. Diau, J. Phys. Chem. C 112, 19151 (2008)

    Article  Google Scholar 

  22. S.V. Nair, A. Balakrishnan, K.R.V. Subramanian, A.M. Anu, A.M. Asha, B. Deepika, B. Mater, Science 35, 489 (2012)

    Google Scholar 

  23. Z. Zhang, L. Zhang, M.N. Hedhili, H. Zhang, P. Wang, Nano Lett. 13, 14 (2012)

    Article  ADS  Google Scholar 

  24. K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, Nano Lett. 7, 69 (2007)

    Article  ADS  Google Scholar 

  25. X.J. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Nano Lett. 8, 3781 (2008)

    Article  ADS  Google Scholar 

  26. A.S. Nair, R. Jose, Y. Shengyuan, S. Ramakrishna, J. Colloid Interface Sci. 353, 39 (2011)

    Article  Google Scholar 

  27. Z.H. Chen, Y.B. Tang, C.P. Liu, Y.H. Leung, G.D. Yuan, L.M. Chen, Y.Q. Wang, I. Bello, J.A. Zapien, W.J. Zhang, C.S. Lee, S.T. Lee, J. Phys. Chem. C 113, 13433 (2009)

    Article  Google Scholar 

  28. S.P. Albu, A. Ghicov, J.M. Macak, R. Hahn, P. Schmuki, Nano Lett. 7, 1286 (2007)

    Article  ADS  Google Scholar 

  29. Z.R.R. Tian, J.A. Voigt, J. Liu, B. McKenzie, H.F. Xu, J. Am. Chem. Soc. 125, 12384 (2003)

    Article  Google Scholar 

  30. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 14, 3160 (1998)

    Article  Google Scholar 

  31. Q. Chen, W.Z. Zhou, G.H. Du, L.H. Peng, Adv. Mater. 14, 1208 (2002)

    Article  Google Scholar 

  32. B.D. Yao, Y.F. Chan, X.Y. Zhang, W.F. Zhang, Z.Y. Yang, N. Wang, Appl. Phys. Lett. 82, 281 (2003)

    Article  ADS  Google Scholar 

  33. J.H. Jung, H. Kobayashi, K.J.C. van Bommel, S. Shinkai, T. Shimizu, Chem. Mater. 14, 1445 (2002)

    Article  Google Scholar 

  34. S. Kobayashi, N. Hamasaki, M. Suzuki, M. Kimura, H. Shirai, K. Hanabusa, J. Am. Chem. Soc. 124, 6550 (2002)

    Article  Google Scholar 

  35. P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed. 50, 2904 (2011)

    Article  Google Scholar 

  36. G.K. Mor, O.K. Varghese, M. Paulose, N. Mukherjee, C.A. Grimes, Fabrication of tapered. J. Mater. Res. 18, 2588 (2003)

    Article  ADS  Google Scholar 

  37. Q. Cai, M. Paulose, O.K. Varghese, C.A. Grimes, J. Mater. Res. 20, 230 (2005)

    Article  ADS  Google Scholar 

  38. C. Ruan, M. Paulose, O.K. Varghese, G.K. Mor, C.A. Grimes, J. Phys. Chem. B 109, 15754 (2005)

    Article  Google Scholar 

  39. H. Masuda, K. Fukuda, Science 268, 1466 (1995)

    Article  ADS  Google Scholar 

  40. V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Electrochim. Acta 45, 921 (1991)

    Article  Google Scholar 

  41. J.M. Macak, H. Tsuchiya, P. Schmuki, Angew. Chem. Int. Ed. 44, 2100 (2005)

    Article  Google Scholar 

  42. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, Angew. Chem. Int. Ed. 44, 7463 (2005)

    Article  Google Scholar 

  43. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Nano Lett. 5, 191 (2005)

    Article  ADS  Google Scholar 

  44. J.G. Yu, B. Wang, Appl. Catal. B 94, 295 (2010)

    Article  Google Scholar 

  45. J.M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Small 3, 300 (2007)

    Article  Google Scholar 

  46. D. Regonini, A. Satka, A. Jaroenworaluck, D.W.E. Allsopp, C.R. Bowen, R. Stevens, Electrochim. Acta 74, 244 (2012)

    Article  Google Scholar 

  47. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, Sol. Energ. Mat. Sol. Cells 90, 2011 (2006)

    Article  Google Scholar 

  48. V. Vega, J.M. Montero, J. García, V.M. Prida, W. Rahimi, M. Waleczek, C. Bae, R. Zierold, K. Nielsch, Electrochim. Acta 203, 51 (2016)

    Article  Google Scholar 

  49. S. Ben Taieb, I. Ben Assaker, A. Bardaoui, M. Gannouni, A. Souissi, S. Nowak, L. Mouton, S. Ammar, R. Chtourou, J. Hydrogen Energy 41, 6230 (2016)

    Article  Google Scholar 

  50. D. Wood, J. Tauc, Phys. Rev. B 5, 3144 (1972)

    Article  ADS  Google Scholar 

  51. R. Lopez, R. Gomez, J. Sol-Gel, Sci. Technol 61, 1 (2012)

    Google Scholar 

  52. G.L. Chiarello, A. Zuliani, D. Ceresoli, R. Martinazzo, E. Selli, ACS Catal. 6, 1345 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Ghorannevis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoseinzadeh, T., Ghorannevis, Z. & Ghoranneviss, M. Effect of different electrolyte concentrations on TiO2 anodized nanotubes physical properties. Appl. Phys. A 123, 436 (2017). https://doi.org/10.1007/s00339-017-1040-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1040-0

Navigation