Skip to main content
Log in

Exchange bias in barium ferrite/magnetite nanocomposites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Exchange bias which accompanies a magnetic hysteresis loop shift along field axis or increase in coercivity, occurs due to exchange interactions between ferromagnetic (FM) and antiferromagnetic (AFM) or in ferrimagnetic nanoparticles/nanolayers systems. Mixture of barium ferrite (BaFe12O19) and graphite was mechanically milled for different times. Phase analysis, particles morphology, magnetic properties at room temperature and magnetic properties after field cooling at 4 k were measured via XRD, HRTEM, VSM and SQUID, respectively. A nanocomposite of BaFe12O19/Fe3O4 forms after 20 and 40 h of milling. HRTEM images revealed that the nanocomposite consists of crystallites of both phases in intimate contact with crystallite sizes below 20 nm after 20 h milling. Field cooling of the 20- and 40-h milled samples up to 4 k resulted in exchange bias phenomenon. The shift in hysteresis loop for 20- and 40-h milled samples was 204 and 254 Oe, respectively. In spite of the mostly observed exchange coupling systems being ferromagnetic/antiferromagnetic systems, in this research the exchange coupling occurred between ferrimagnetic phases. The large difference between coercivity values at 300 and 4 k revealed that superparamagnetic particles constitute a large volume fraction of the milled nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J.S. Munoz, M.D. Baro, Exchange bias in nanostructures. Phys. Rep. 422, 65–117 (2005)

    Article  ADS  Google Scholar 

  2. T.J. Moran, J. Nogués, D. Lederman, I.K. Schuller, Perpendicular coupling at Fe–FeF2 interfaces. Appl. Phys. Lett. 72(5), 617–619 (1998)

    Article  ADS  Google Scholar 

  3. H. Matsuyama, C. Haginoya, K. Koike, Microscopic imaging of Fe magnetic domains exchange coupled with those in a NiO(001) surface. Phys. Rev. Lett. 85, 646 (2000)

    Article  ADS  Google Scholar 

  4. I.N. Krivorotov, C. Leighton, J. Nogues, I.K. Schuller, E.D. Dahlberg, Relation between exchange anisotropy and magnetization reversal asymmetry in Fe/MnF2 bilayers. Phys. Rev. B 65, 100402 (2002)

    Article  ADS  Google Scholar 

  5. T. Mewes, H. Nembach, M. Rickart, S.O. Demokritov, J. Fassbender, B. Hillebrands, Angular dependence and phase diagrams of exchange-coupled epitaxial Ni81Fe19/Fe50Mn50(001) bilayers. Phys Rev B 65, 224423 (2002)

    Article  ADS  Google Scholar 

  6. I.N. Krivorotov, C. Leighton, J. Nogués, I.K. Schuller, E. Dan Dahlberg, Origin of complex exchange anisotropy in Fe/MnF2 bilayers. Phys. Rev. B 68(5), 544301–544305 (2003)

    Article  Google Scholar 

  7. M.R. Fitzsimmons, P. Yashar, C. Leighton, I.K. Schuller, J. Nogues, C.F. Majkrzak, J.A. Dura, Asymmetric magnetization reversal in exchange-biased hysteresis loops. Phys. Rev. Lett. 84, 3986 (2000)

    Article  ADS  Google Scholar 

  8. C. Leighton, M.R. Fitzsimmons, P. Yashar, A. Hoffmann, J. Nogués, J. Dura, C.F. Majkrzak, Ivan K. Schuller, Two-stage magnetization reversal in exchange biased bilayers. Phys. Rev. Lett. 86, 4394 (2001)

    Article  ADS  Google Scholar 

  9. V.I. Nikitenko, V.S. Gornakov, A.J. Shapiro, R.D. Shull, K. Liu, S.M. Zhou, C.L. Chien, Asymmetry in elementary events of magnetization reversal in a ferromagnetic/antiferromagnetic bilayer. Phys. Rev. Lett. 84, 765 (2000)

    Article  ADS  Google Scholar 

  10. M. Gierlings et al., Change and asymmetry of magnetization reversal for a Co/CoO exchange-bias system. Phys. Rev. B 65(9), 092407 (2002)

    Article  ADS  Google Scholar 

  11. E. Pina, C. Prados, A. Hernando, Large training effects in magnetic relaxation and anisotropic magnetoresistance in nanocrystalline exchange-biased Ni80Fe20/Co–O bilayers. Phys. Rev. B 69, 052402 (2004)

    Article  ADS  Google Scholar 

  12. J. McCord, R. Schäfer, R. Mattheis, K.-U. Barholz, Kerr observations of asymmetric magnetization reversal processes in CoFe/IrMn bilayer systems. J. Appl. Phys. 93, 5491 (2003)

    Article  ADS  Google Scholar 

  13. Julio Camarero, Jordi Sort, Axel Hoffmann, J.M. García-Martín, B. Dieny, R. Miranda, J. Nogués, Origin of the asymmetric magnetization reversal behavior in exchange-biased systems: competing anisotropies. Phys. Rev. Lett. 95, 057204 (2005)

    Article  ADS  Google Scholar 

  14. F. Radu, M. Etzkorn, T. Schmitte, R. Siebrecht, A. Schreyer, K. Westerholt, H. Zabel, Asymmetric magnetization reversal on exchange biased CoO/Co bilayers. J. Magn. Magn. Mater. 240(1–3), 251–253 (2002)

    Article  ADS  Google Scholar 

  15. W.H. Meiklejohn, C.P. Bean, Phys. Rev. 102, 1413 (1956)

    Article  ADS  Google Scholar 

  16. J. Nogués, I.K. Schuller, Exchange bias. J. Magn. Magn. Mater. 192(2), 203–232 (1999)

    Article  ADS  Google Scholar 

  17. J. Sort, S. Suriñach, J.S. Muñoz, M.D. Baró, J. Nogués, G. Chouteau, V. Skumryev, G.C. Hadjipanayis, Improving the energy product of hard magnetic materials. Phys Rev B 65, 174420 (2002)

    Article  ADS  Google Scholar 

  18. V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, J. Nogués, Beating the superparamagnetic limit with exchange bias. Nature 423, 850–853 (2003)

    Article  ADS  Google Scholar 

  19. J. Nogués, Exchange bias in ferromagnetic nanoparticles embedded in an antiferromagnetic matrix. Int. J. Nanotechnol. 2(1/2), 23–41 (2005)

    Article  ADS  Google Scholar 

  20. J. Löffler, H. Van Swygenhoven, W. Wagner, J. Meier, B. Doudin, J-Ph Ansermet, Influence of grain size and oxidation on the magnetic properties of nanostructured Fe and Ni. Nanostruct. Mater. 9(1–8), 523–526 (1997)

    Article  Google Scholar 

  21. W.H. Meiklejohn, C.P. Bean, New magnetic anisotropy. Phys. Rev. 105, 904–913 (1957)

    Article  ADS  Google Scholar 

  22. J. Demeter, E. Menéndez, A. Teichert, R. Steitz, D. Paramanik, C. Van Haesendonck, A. Vantomme, K. Temst, Influence of magnetocrystalline anisotropy on the magnetization reversal mechanism in exchange bias Co/CoO bilayers. Solid State Commun. 152(4), 292–295 (2012)

    Article  ADS  Google Scholar 

  23. W.H. Meiklejohn, Exchange anisotropy in the iron-iron oxide system. J. Appl. Phys 29, 454–455 (1958)

    Article  ADS  Google Scholar 

  24. R.K. Zheng, H. Liu, Y. Wang, X.X. Zhang, Cr2O3 surface layer and exchange bias in an acicular CrO2 particle. Appl. Phys. Lett. 84, 702–704 (2004)

    Article  ADS  Google Scholar 

  25. F. Sánchez-De Jesús, A.M. Bolarín-Miró, C.A. Cortés-Escobedo, R. Valenzuela, S. Ammar, Mechanosynthesis, crystal structure and magnetic characterization of M-type SrFe12O19. Ceram. Int. 40(3), 4033–4038 (2014)

    Article  Google Scholar 

  26. D. Chen, I. Harward, J. Baptist, S. Goldman, Z. Celinski, Curie temperature and magnetic properties of aluminum doped barium ferrite particles prepared by ball mill method. J. Magn. Magn. Mater. 395(1), 350–353 (2015)

    Article  ADS  Google Scholar 

  27. Y. Su, H. Su, Y. Zhu, F. Wang, J. Du, W. Xia, A. Yan, J.P. Liu, J. Zhang, Effects of magnetic field heat treatment on Sm–Co/α-Fe nanocomposite permanent magnetic materials prepared by high energy ball milling. J. Alloy. Compd. 647, 375–379 (2015)

    Article  Google Scholar 

  28. J. Sort, J. Nogués, X. Amils, S. Suriñach, J.S. Muñoz, M.D. Baró, Room temperature magnetic hardening in mechanically milled ferromagnetic–antiferromagnetic composites. J. Magn. Magn. Mater. 219((1,2)), 53–57 (2000)

    Article  ADS  Google Scholar 

  29. Y. Shi, J. Ding, S.L.H. Tan, Ni/Fe2O3 magnetic composite synthesized by mechanical alloying. J. Magn. Magn. Mater. 256(1–3), 13–19 (2003)

    Article  ADS  Google Scholar 

  30. J.M. Gonzalez, M.I. Montero, V. Raposo, P. Crespo, P. Marin, A. Hernando, Dipolar interactions in hard-soft nanocomposites. IEEE Trans. Magn. 36, 3342–3344 (2000)

    Article  ADS  Google Scholar 

  31. J.M. González, M.I. Montero, V. Raposo, A. Hernando, On the relationship between the hysteresis loop shift and the dipolar interactions in hard–soft nanocomposite samples. J. Magn. Magn. Mater. 221(1–2), 187–195 (2000)

    Article  ADS  Google Scholar 

  32. J.M. Gonzalez, M.I. Montero, P. Crespo, P. Marin, A. Hernando, Hysteresis and relaxation of hard-soft nanocomposite samples. J. Appl. Phys. 87(9), 4759–4761 (2000)

    Article  ADS  Google Scholar 

  33. J. Sort, J. Nogues, S. Surinach, J.S. Munoz, M.D. Baro, Coercivity enhancement in ball-milled and heat-treated Sr-ferrite with iron sulphide. J. Metastab. Nanocryst. Mater. 15–16, 599–606 (2003)

    Article  Google Scholar 

  34. X.S. Liu, B.X. Gu, W. Zhong, H.Y. Jiang, Y.W. Du, Ferromagnetic/antiferromagnetic exchange coupling in SrFe12O19/CoO composites. Appl. Phys. A 77, 673–676 (2003)

    Article  ADS  Google Scholar 

  35. H. Zeng, S. Sun, J. Li, Z.L. Wang, J.P. Liu, Tailoring magnetic properties of core/shell nanoparticles. Appl. Phys. Lett. 85(5), 792–794 (2004)

    Article  ADS  Google Scholar 

  36. M.P. Buron, M. Gougeon, A. Rousset, Magnetic behaviour of submicronic acicular composite particles. Key Eng. Mater. 132–136, 1420–1423 (1997)

    Article  Google Scholar 

  37. M. Gougeon, E. Leroy, P. Tailhades, P. Mollard, A. Rousset, Thermomagnetic study of surface cobalt modified iron oxide particles derived from oxalic precursors. IEEE Trans. Magn. 26, 57–59 (1990)

    Article  ADS  Google Scholar 

  38. G. Bottoni, D. Candolfo, A. Cecchetti, A.R. Corradi, F. Masoli, Influence of the Co-doping of iron oxides on magnetic particle interactions. IEEE Trans. Magn. 26(5), 1885–1887 (1990)

    Article  ADS  Google Scholar 

  39. C. Sudakar, T.R.N. Kutty, Structural and magnetic characteristics of cobalt ferrite-coated nano-fibrous γ-Fe2O3. J. Magn. Magn. Mater. 279(2–3), 363–374 (2004)

    Article  ADS  Google Scholar 

  40. M.C. Deng, S.L. Hsu, T.S. Chin, Acicular γ-Fe2O3 particles surface-coated with barium ferrite. IEEE Trans. Magn. 28, 2385–2387 (1992)

    Article  ADS  Google Scholar 

  41. A. Elling, Co-modified pigments in magnetic recording. IEEE Trans. Magn. 23, 16–21 (1987)

    Article  ADS  Google Scholar 

  42. J.Z. Jiang, G.F. Goya, H.R. Rechenberg, Magnetic properties of nanostructured CuFe2O4. J. Phys.: Condens. Matter 11(20), 4063–4073 (1999)

    ADS  Google Scholar 

  43. M. Muroi, R. Street, P.G. McCormick, J. Amighian, Magnetic properties of ultrafine MnFe2O4 powders prepared by mechanochemical processing. Phys. Rev. B 63, 184414 (2001)

    Article  ADS  Google Scholar 

  44. V. Šepelak, D. Baabe, D. Mienert, D. Schultze, F. Krumeich, F.J. Litterst, K.D. Becker, Evolution of structure and magnetic properties with annealing temperature in nanoscale high-energy-milled nickel ferrite. J. Magn. Magn. Mater. 257(2–3), 377–386 (2003)

    Article  ADS  Google Scholar 

  45. Y.D. Zhang, S.H. Ge, H. Zhang, S. Hui, J.I. Budnick, W.A. Hines, M.J. Yacaman, M. Miki, Effect of spin disorder on magnetic properties of nanostructured Ni-ferrite. J. Appl. Phys. 95, 7130–7132 (2004)

    Article  ADS  Google Scholar 

  46. C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, R.J. Joseyphus, B. Jayedevan, K. Tohji, K. Chattopadhyay, Grain size effect on the Néel temperature and magnetic properties of nanocrystalline NiFe2O4 spinel. J. Magn. Magn. Mater. 238(2–3), 281–287 (2002)

    Article  ADS  Google Scholar 

  47. M. Garcia del Muro, X. Batlle, A. Labarta, Erasing the glassy state in magnetic fine particles. Phys. Rev. B 59, 13584 (1999)

    Article  ADS  Google Scholar 

  48. F. Zavaliche, F. Bensebaa, P. L’Ecuyer, T. Veres, R.W. Cochrane, The role of non-collinear spins on the magnetic properties of uncoupled nanometer-size particles. J. Magn. Magn. Mater. 285(1–2), 204–209 (2005)

    Article  ADS  Google Scholar 

  49. M. Pal, S. Bid, S.K. Pradhan, B.K. Nath, D. Das, D. Chakravorty, Synthesis of nanocomposites comprising iron and barium hexaferrites. J. Magn. Magn. Mater. 269(1), 42–47 (2004)

    Article  ADS  Google Scholar 

  50. M. Pal, D. Das, S.N. Chintalapudi, D. Chakravorty, Preparation of nanocomposites containing iron and nickel–zinc ferrite. J. Mater. Res. 15, 683–688 (2000)

    Article  ADS  Google Scholar 

  51. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1–1, 22–31 (1953)

    Article  Google Scholar 

  52. C. Suryanarayana, Mechanical alloying and milling. Prog. Mater Sci. 46(1–2), 1–184 (2001)

    Article  Google Scholar 

  53. M.J. Molaei, A. Ataie, S. Raygan, M.R. Rahimipour, S.J. Picken, F.D. Tichelaar, E. Legarra, F. Plazaola, Magnetic property enhancement and characterization of nano-structured barium ferrite by mechano-thermal treatment. Mater. Charact. 63, 83–89 (2012)

    Article  Google Scholar 

  54. M.J. Molaei, A. Ataie, S. Raygan, S.J. Picken, F.D. Tichelaar, Investigation on the effects of milling atmosphere on synthesis of barium ferrite/magnetite nanocomposite. J. Supercond. Novel Magn. 25, 519–524 (2012)

    Article  Google Scholar 

  55. M.J. Molaei, A. Ataie, S. Raygan, S.J. Picken, F.D. Tichelaar, The effect of heat treatment and re-calcination on magnetic properties of BaFe12O19/Fe3O4 nano-composite. Ceram. Int. 38(4), 3155–3159 (2012)

    Article  Google Scholar 

  56. M.J. Molaei, A. Ataie, S. Raygan, S.J. Picken, E. Mendes, F.D. Tichelaar, Synthesis and characterization of BaFe12O19/Fe3O4 and BaFe12O19/Fe/Fe3O4 magnetic nano-composites. Powder Technol. 221, 292–295 (2012)

    Article  Google Scholar 

  57. M.J. Molaei, A. Ataie, S. Raygan, Synthesis of magnetic nano-composite by partial reduction of barium hexaferrite via high energy ball milling. Key Eng. Mater. 434–435, 354–356 (2010)

    Article  Google Scholar 

  58. M.J. Molaei, A. Ataie, S. Raygan, S.J. Picken, Role of intensive milling in the processing of barium ferrite/magnetite/iron hybrid magnetic nano-composites via partial reduction of barium ferrite. Mater. Charact. 101, 78–82 (2015)

    Article  Google Scholar 

  59. S. Gangopadhyay, G.C. Hadjipanayis, C.M. Sorensen, K.J. Klabunde, Magnetism in ultrafine Fe and Co particles. IEEE Trans. Magn. 29, 2602–2607 (1993)

    Article  ADS  Google Scholar 

  60. J. Loffler, W. Wagner, H. Van Swygenhoven, A. Wiedenmann, Nanoscale characterization of magnetic properties in nanostructured Fe, Ni and Co by small-angle neutron scattering. Nanostruct. Mater. 9(1–8), 331–334 (1997)

    Article  Google Scholar 

  61. J.F. Loffler, J.P. Meier, B. Doudin, J.P. Ansermet, Random and exchange anisotropy in consolidated nanostructured Fe and Ni: role of grain size and trace oxides on the magnetic properties. Phys. Rev. B 57, 2915 (1998)

    Article  ADS  Google Scholar 

  62. J.F. Loffler, H. Van Swygenhoven, W. Wagner, J.P. Meier, B. Doudin, J.P. Ansermet, Influence of grain size and oxidation on the magnetic properties of nanostructured Fe and Ni. Nanostruct. Mater. 9, 523–526 (1997)

    Article  Google Scholar 

  63. V. Papaefthymiou, A. Kostikas, A. Simopoulos, D. Niarchos, S. Gangopadhyay, G.C. Hadjipanayis, C.M. Sorensen, K.J. Klabunde, Magnetic hysteresis and Mossbauer studies in ultrafine Fe particles. J. Appl. Phys. 67, 4487 (1990)

    Article  ADS  Google Scholar 

  64. Y. Ijiri, C.V. Kelly, J.A. Borchers, J.J. Rhyne, D.F. Farrell, S.A. Majetich, Detection of spin coupling in iron nanoparticles with small angle neutron scattering. Appl. Phys. Lett. 86, 243102 (2005)

    Article  ADS  Google Scholar 

  65. F.X. Redl, C.T. Black, G.C. Papaefthymiou, R.L. Sandstrom, M. Yin, H. Zeng, C.B. Murray, S.P. O’Brien, Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale. J. Am. Chem. Soc. 126, 14583–14599 (2004)

    Article  Google Scholar 

  66. J. Ding, H. Yang, W.F. Miao, P.G. McCormick, R. Street, High coercivity Ba hexaferrite prepared by mechanical alloying. J. Alloy. Compd. 221(1–2), 70–73 (1995)

    Article  Google Scholar 

  67. A. Goldman, Modern ferrite technology, 2nd edn. (Springer, USA, 2006), pp. 166–169

    Google Scholar 

  68. G.F. Goya, Handling the particle size and distribution of Fe3O4 nanoparticles through ball milling. Solid State Commun. 130, 783–787 (2004)

    Article  ADS  Google Scholar 

  69. F. Zhao, B. Zhang, L. Feng, Preparation and magnetic properties of magnetite nanoparticles. Mater. Lett. 68, 112–114 (2012)

    Article  Google Scholar 

  70. Y. Mizukoshi, T. Shuto, N. Masahashi, S. Tanabe, Preparation of superparamagnetic magnetite nanoparticles by reverse precipitation method: contribution of sonochemically generated oxidants. Ultrason. Sonochem. 16(4), 525–531 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate Materials and Energy Research Center, School of Metallurgy and Materials Engineering of University of Tehran, Iran Nanotechnology Initiative Council and Delft University of Technology for financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Molaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molaei, M.J., Ataie, A., Raygan, S. et al. Exchange bias in barium ferrite/magnetite nanocomposites. Appl. Phys. A 123, 437 (2017). https://doi.org/10.1007/s00339-017-1034-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1034-y

Navigation