Skip to main content
Log in

Wavelength and coherence effects on the growth mechanism of silicon nanopillars and their use in the modification of spontaneous lifetime emission of BODIPY dye molecules

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Silicon nanopillars are grown by an electrochemical anodization of p-type silicon wafers at low current densities in a hydrofluoric acid solution. CW, white light, and various UV pulsed lasers are employed as illumination sources in sample preparation to study wavelength and coherence effects on the growth mechanism of the nanopillars. Coherence is observed to be the foundation of regularity in obtaining conical shapes. The pillar size is found to be almost linearly proportional to the employed illumination wavelength during their growth. BODIPY dye molecules are chemically attached to these silicon nanopillars and the radiative decay rates are investigated by means of a time-resolved fluorescence experiment. The decay rate of the dye molecules embedded in the vicinity of various size pillar tips is significantly affected due to different apex angles of the conical nature. It is demonstrated that the pillar size and the separation between pillars can be adjusted if one uses a coherent light source with an appropriate wavelength during the course of fabrication process. Since change in the decay rate is due to tips of the pillars only, separation of a few micrometers between pillar tips allows one to directly monitor a dye, which is embedded to the tip of a single nanopillar, via a confocal microscopic method for the spontaneous lifetime measurements, without having needed to any extra efforts for an in situ imaging process. It is observed that as the pillar size gets smaller, the inhibition in the spontaneous lifetime of BODIPY is more pronounced. In addition, a more regular pillar structure yields nonvarying decay rates of the dye molecules throughout the silicon sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V. Sivakov, G. Andra, A. Gawlik, A. Berger, J. Plentz, F. Falk, S.H. Christiansen, Nano Lett. 9, 1549 (2009)

    Article  ADS  Google Scholar 

  2. K.S. Dancil, D.P. Greiner, M.J. Sailor, J. Am. Chem. Soc. 121, 7925 (1999)

    Article  Google Scholar 

  3. N.M. Park, T.S. Kim, S.J. Park, Appl. Phys. Lett. 78, 2575 (2001)

    Article  ADS  Google Scholar 

  4. L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990)

    Article  ADS  Google Scholar 

  5. Z. Gaburro, H. You, D. Babic, J. Appl. Phys. 84, 6345 (1998)

    Article  ADS  Google Scholar 

  6. M.C. Cheung, P.J.R. Roche, M.H. Hassan, A.G. Kirk, Z. Mi, V.P. Chodavarapu, J. Nanophotonics 5, 53503 (2011)

    Article  ADS  Google Scholar 

  7. N. Chiboub, N. Gabouze, J.N. Chazalviel, F. Ozanam, S. Moulay, A. Manseri, Appl. Surf. Sci. 256, 3826 (2010)

    Article  ADS  Google Scholar 

  8. O. Erdamar, B. Bilen, Y. Skarlatos, G. Aktas, M.N. Inci, Phys. Status Solidi C 4, 601 (2007)

    Article  ADS  Google Scholar 

  9. M. Naddaf, H. Hamadeh, Mater. Sci. Eng., C, Biomim. Mater., Sens. Syst. 29, 2092 (2009)

    Article  Google Scholar 

  10. V.V. Doan, R.M. Penner, M.J. Sailor, J. Phys. Chem. 97, 4505 (1993)

    Article  Google Scholar 

  11. R. Kumar, H.S. Mavi, A.K. Shukla, Micron 39, 287 (2008)

    Article  Google Scholar 

  12. C.H. Crouch, J.E. Carey, J.M. Warrender, M.J. Aziz, E. Mazur, Appl. Phys. Lett. 84, 2004 (1850)

    Google Scholar 

  13. N. Noguchi, I. Suemune, Appl. Phys. Lett. 62, 1429 (1993)

    Article  ADS  Google Scholar 

  14. A. Ramizy, Z. Hassan, K. Omar, Sci. China, Technol. Sci. 54, 58 (2011)

    Article  Google Scholar 

  15. R.K. Soni, G.R. Bassam, S.C. Abbi, Appl. Surf. Sci. 214, 151 (2003)

    Article  ADS  Google Scholar 

  16. C. Radu, S. Simon, M. Zamfirescu, M. Ulmeanu, M. Enculescu, M. Radoiu, J. Appl. Phys. 110, 34901 (2011)

    Article  Google Scholar 

  17. J.I. Gersten, A. Nitzan, J. Chem. Phys. 75, 1139 (1981)

    Article  ADS  Google Scholar 

  18. J.L. Shepherd, A. Kell, E. Chung, C.W. Sinclar, M.S. Workentin, D. Bizzotto, J. Am. Chem. Soc. 126, 8329 (2004)

    Article  Google Scholar 

  19. S. Astilean, S. Garrett, P. Andrew, W.L. Barnes, J. Mol. Struct. 651-653, 277 (2003)

    Article  ADS  Google Scholar 

  20. R. Bardhan, N.K. Grady, J.R. Cole, A. Joshi, N.J. Halas, ACS Nano 3, 744 (2009)

    Article  Google Scholar 

  21. M.R. Vasic, L.D. Cola, H. Zuilhof, J. Phys. Chem. C 113, 2235 (2009)

    Article  Google Scholar 

  22. E.C. Wu, J.H. Park, J. Park, E. Segal, F. Cunin, M.J. Sailor, ACS Nano 2, 2401 (2008)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by TUBITAK (contract numbers: 106T011 and 107T206) and Bogazici University Research Fund (contract numbers: 05HB301 and 08HB301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Naci Inci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acikgoz, S., Bilen, B., Saygili, A.C. et al. Wavelength and coherence effects on the growth mechanism of silicon nanopillars and their use in the modification of spontaneous lifetime emission of BODIPY dye molecules. Appl. Phys. A 108, 801–807 (2012). https://doi.org/10.1007/s00339-012-6972-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6972-9

Keywords

Navigation