Skip to main content
Log in

LcMCII-1 is involved in the ROS-dependent senescence of the rudimentary leaves of Litchi chinensis

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

LcMCII - 1 is a type II metacaspase. Over-expression of LcMCII- 1 in Arabidopsis promoted ROS-dependent and natural senescence. Virus-induced LcMCII- 1 silencing delayed the ROS-dependent senescence of the rudimentary leaves of Litchi chinensis .

Abstract

Litchi is an evergreen woody fruit tree that is widely cultivated in subtropical and tropical regions. Its floral buds are mixed with axillary or apical panicle primordia, leaf primordia and rudimentary leaves. A low spring temperature is vital for litchi production as it promotes the abscission of the rudimentary leaves, which could otherwise prevent panicle development. Hence, climate change could present additional challenges for litchi production. We previously reported that reactive oxygen species (ROS) can substitute low-temperature treatment to induce the senescence of rudimentary leaves. We have now identified from RNA-Seq data a litchi type II metacaspase gene, LcMCII-1, that is responsive to ROS. Silencing LcMCII-1 by virus-induced gene silencing delayed ROS-dependent senescence. The ectopic over-expression of LcMCII-1 in transgenic Arabidopsis promoted ROS-dependent and natural senescence. Consistently, the transient expression of LcMCII-1 in tobacco leaf by agroinfiltration resulted in leaf yellowing. Our findings demonstrate that LcMCII-1 is positively involved in the regulation of rudimentary leaf senescence in litchi and provide a new target for the future molecular breeding of new cultivars that can set fruit in warmer climates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acosta-Maspons A, Sepúlveda-García E, Sánchez-Baldoquín L, Marrero-Gutiérrez J, Pons T, Rocha-Sosa M, González L (2014) Two aspartate residues at the putative p10 subunit of a type II metacaspase from Nicotiana tabacum L. may contribute to the substrate-binding pocket. Planta 239(1):147–160

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe DC (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2(2):109–113

    Article  CAS  PubMed  Google Scholar 

  • Bozhkov PV, Suarez MF, Filonova LH, Daniel G, Zamyatnin AJ, Rodriguez-Nieto S, Zhivotovsky B, Smertenko A (2005) Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis. PNAS 102(40):14463–14468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi CJ, Berges JA (2013) New types of metacaspases in phytoplankton reveal diverse origins of cell death proteases. Cell Death Dis 4:e490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Cocheme HM, Murphy MP (2008) Complex I is the major site of mitochondrial superoxide production by paraquat. J Biol Chem 283(4):1786–1798

    Article  CAS  PubMed  Google Scholar 

  • Coll NS, Vercammen D, Smidler A, Clover C, Van Breusegem F, Dangl JL, Epple P (2010) Arabidopsis Type I Metacaspases control cell death. Science 330(6009):1393–1397

    Article  CAS  PubMed  Google Scholar 

  • Coll NS, Smidler A, Puigvert M, Popa C, Valls M, Dangl JL (2014) The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: functional linkage with autophagy. Cell Death Differ 21(9):1399–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui ZY (2010) Cloning and expression analysis of AP1 and CDPK homologue gene in Litchi (Litchi chinensis Sonn.). Dissertation, South China Agricultural University

  • Dodge AD (1971) The mode of action of the bipyridylium herbicides, paraquat and diquat. Endeavour 30:130–135

    Article  CAS  PubMed  Google Scholar 

  • Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147(4):742–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He R, Drury GE, Rotari VI, Gordon A, Willer M, Farzaneh T, Woltering EJ, Gallois P (2008) Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis. J Biol Chem 283(2):774–783

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Zhang H, Hong Y, Liu S, Li D, Song F (2015) Stress-responsive expression, subcellular localization and protein–protein interactions of the rice Metacaspase family. Int J Mol Sci 16(7):16216–16241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam E, Zhang Y (2012) Regulating the reapers: activating metacaspases for programmed cell death. Trends Plant Sci 17(8):487–494

    Article  CAS  PubMed  Google Scholar 

  • Li XJ, Zhang JQ, Wu ZC, Lai B, Huang XM, Qin YH, Wang HC, Hu GB (2016) Functional characterization of a glucosyltransferase gene, LcUFGT1, involved in the formation of cyanidin glucoside in the pericarp of Litchi chinensis. Physiol Plant 156(2):139–149

    Article  CAS  Google Scholar 

  • Lim H, Kim S, Park E, Lim C (2007) Overexpression of a metacaspase gene stimulates cell growth and stress response in Schizosaccharomyces pombe. Can J Microbiol 53(8):1016–1023

    Article  CAS  PubMed  Google Scholar 

  • Liu WW, Chen HB, Lu XY, Rahman MJ, Zhong S, Zhou BY (2015) Identification of nitric oxide responsive genes in the floral buds of Litchi chinensis. Biol Plant 59(1):115–122

    Article  CAS  Google Scholar 

  • Lu X, Kim H, Zhong S, Chen H, Hu Z, Zhou B (2014) De novo transcriptome assembly for rudimentary leaves in Litchi chinesis Sonn. and identification of differentially expressed genes in response to reactive oxygen species. BMC Genom 15:805

    Article  Google Scholar 

  • Lü P, Zhang C, Liu J, Liu X, Jiang G, Jiang X, Khan MA, Wang L, Hong B, Gao J (2014) RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence. Plant J 78(4):578–590

    Article  PubMed  Google Scholar 

  • Madeo F, Herker E, Wissing S, Jungwirth H, Eisenberg T, Fröhlich K (2004) Apoptosis in yeast. Curr Opin Microbiol 7(6):655–660

    Article  CAS  PubMed  Google Scholar 

  • Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Technical advance: tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25(2):237–245

    Article  CAS  PubMed  Google Scholar 

  • Renner T, Bragg J, Driscoll HE, Cho J, Jackson AO, Specht CD (2009) Virus-induced gene silencing in the culinary ginger (Zingiber officinale): an effective mechanism for down-regulating gene expression in tropical monocots. Mol Plant 2(5):1084–1094

    Article  CAS  PubMed  Google Scholar 

  • Robertson D (2004) VIGS vectors for gene silencing: many targets, many tools. Annu Rev Plant Biol 55:495–519

    Article  CAS  PubMed  Google Scholar 

  • Senthil-Kumar M, Mysore KS (2011) New dimensions for VIGS in plant functional genomics. Trends Plant Sci 16(12):656–665

    Article  CAS  PubMed  Google Scholar 

  • Senthil-Kumar M, Mysore KS (2014) Tobacco rattle virus-based virus-induced gene silencing in Nicotiana benthamiana. Nat Protoc 9(7):1549–1562

    Article  CAS  PubMed  Google Scholar 

  • Suarez MF, Filonova LH, Smertenko A, Savenkov EI, Clapham DH, von Arnold S, Zhivotovsky B, Bozhkov PV (2004) Metacaspase-dependent programmed cell death is essential for plant embryogenesis. Curr Biol 14(9):R339–R340

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian J, Pei H, Zhang S, Chen J, Chen W, Yang R, Meng Y, You J, Gao J, Ma N (2014) TRV-GFP: a modified Tobacco rattle virus vector for efficient and visualizable analysis of gene function. J Exp Bot 65(1):311–322

    Article  CAS  PubMed  Google Scholar 

  • Tsiatsiani L, Van Breusegem F, Gallois P, Zavialov A, Lam E, Bozhkov PV (2011) Metacaspases. Cell Death Differ 18:1279–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uren AG, O’Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6(4):961–967

    CAS  PubMed  Google Scholar 

  • Velásquez AC, Chakravarthy S, Martin GB (2009) Virus-induced gene silencing (VIGS) in Nicotiana benthamiana and tomato. J Vis Exp 28:e1292

    Google Scholar 

  • Vercammen D (2004) Type II Metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine. J Biol Chem 279(44):45329–45336

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Chen J, Li Y (2004) Nondestructive and rapid estimation of leaf chlorophyll and nitrogen status of peace lily using a chlorophyll meter. J Plant Nutr 27(3):557–569

    Article  CAS  Google Scholar 

  • Wang B, Guo X, Wang C, Ma J, Niu F, Zhang H, Yang B, Liang W, Han F, Jiang Y (2015a) Identification and characterization of plant-specific NAC gene family in canola (Brassica napus L.) reveal novel members involved in cell death. Plant Mol Biol 87(4–5):395–411

    Article  CAS  PubMed  Google Scholar 

  • Wang TD, Zhang HF, Wu ZC, Li JG, Huang XM, Wang HC (2015b) Sugar uptake in the aril of Litchi fruit depends on the apoplasmic post-phloem transport and the activity of proton pumps and the putative transporter LcSUT4. Plant Cell Physiol 56(2):377–387

    Article  CAS  PubMed  Google Scholar 

  • Watanabe N, Lam E (2005) Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast. J Biol Chem 280(15):14691–14699

    Article  CAS  PubMed  Google Scholar 

  • Watanabe N, Lam E (2011) Arabidopsis metacaspase 2d is a positive mediator of cell death induced during biotic and abiotic stresses. Plant J 66(6):969–982

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Yi G, Zhou B, Zeng J, Huang Y (2007) The advancement of research on litchi and longan germplasm resources in China. Sci Hortic 114(3):143–150

    Article  CAS  Google Scholar 

  • Yamamoto A, Nakamura T, Adu-Gyamfi JJ, Saigusa M (2002) Relationship between chlorophyll content in leaves of sorghum and pigeonpea determined by extraction method and by chlorophyll meter (SPAD-502). J Plant Nutr 25(10):2295–2301

    Article  CAS  Google Scholar 

  • Zhang X, Henriques R, Lin S, Niu Q, Chua N (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1(2):641–646

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, Chen H, Huang X, Li N, Hu Z, Gao Z, Lu Y (2008) Rudimentary leaf abortion with the development of panicle in litchi: changes in ultrastructure, antioxidant enzymes and phytohormones. Sci Hortic 117(3):288–296

    Article  CAS  Google Scholar 

  • Zhou B, Li N, Zhang Z, Huang X, Chen H, Hu Z, Pang X, Liu W, Lu X (2012) Hydrogen peroxide and nitric oxide promote reproductive growth in Litchi chinensis. Biol Plant 56(2):321–329

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation (project no. 31071760) and the China Agricultural Industry Project (project no. CARS-33-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biyan Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by M. C. Jordan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 7837 kb)

Supplementary material 2 (DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Lü, P., Zhong, S. et al. LcMCII-1 is involved in the ROS-dependent senescence of the rudimentary leaves of Litchi chinensis . Plant Cell Rep 36, 89–102 (2017). https://doi.org/10.1007/s00299-016-2059-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-016-2059-y

Keywords

Navigation