Skip to main content

Advertisement

Log in

Transcriptome-guided gene isolation and functional characterization of UDP-xylose synthase and UDP-d-apiose/UDP-d-xylose synthase families from Ornithogalum caudatum Ait

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The present study first identified the involvement of OcUAXS2 and OcUXS1–3 in anticancer polysaccharides biosynthesis in O. caudatum.

Abstract

UDP-xylose synthase (UXS) and UDP-d-apiose/UDP-d-xylose synthase (UAXS), both capable of converting UDP-d-glucuronic acid to UDP-d-xylose, are believed to transfer xylosyl residue to anticancer polysaccharides biosynthesis in Ornithogalum caudatum Ait. However, the cDNA isolation and functional characterization of genes encoding the two enzymes from O. caudatum has never been documented. Previously, the transcriptome sequencing of O. caudatum was performed in our laboratory. In this study, a total of six and two unigenes encoding UXS and UAXS were first retrieved based on RNA-Seq data. The eight putative genes were then successfully isolated from transcriptome of O. caudatum by reverse transcription polymerase chain reaction (RT-PCR). Phylogenetic analysis revealed the six putative UXS isoforms can be classified into three types, one soluble and two distinct putative membrane-bound. Moreover, the two UAXS isoenzymes were predicted to be soluble forms. Subsequently, these candidate cDNAs were characterized to be bona fide genes by functional expression in Escherichia coli individually. Although UXS and UAXS catalyzed the same reaction, their biochemical properties varied significantly. It is worth noting that a ratio switch of UDP-d-xylose/UDP-d-apiose for UAXS was established, which is assumed to be helpful for its biotechnological application. Furthermore, a series of mutants were generated to test the function of NAD+ binding motif GxxGxxG. Most importantly, the present study determined the involvement of OcUAXS2 and OcUXS1–3 in xylose-containing polysaccharides biosynthesis in O. caudatum. These data provide a comprehensive knowledge for UXS and UAXS families in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

IPTG:

Isopropyl β-d-thiogalactoside

OCAP:

Ornithogalum caudatun Ait polysaccharide

ORF:

Open reading frame

RT-PCR:

Reverse transcription polymerase chain reaction

RT-qPCR:

Real-time quantitative PCR

SDR:

Short-chain dehydrogenase/reductase

UAXS:

UDP-d-apiose/UDP-d-xylose synthase

UDP-d-Api:

UDP-d-apiose

UDP-d-Gal:

UDP-d-galactose

UDP-d-GalA:

UDP-d-galacturonic acid

UDP-d-Glc:

UDP-d-glucose

UDP-d-GlcA:

UDP-d-glucuronic acid

UDP-d-Xyl:

UDP-d-xylose

UXS:

UDP-xylose synthase

References

  • Baron D, Wellmann E, Grisebach H (1972) Purification and properties of an enzyme from cell suspension cultures of parsley catalyzing the synthesis of UDP-apiose and UDP-d-xylose from UDP-d-glucuronic acid. Biochim Biophys Acta 258:310–318

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Meng F, Liu Z, Chen R, Zhang M (2010) Antitumor activities of different fractions of polysaccharide purified from Ornithogalum caudatum Ait. Carbohyd Polym 80:845–851

    Article  CAS  Google Scholar 

  • Du Q, Pan W, Tian J, Li B, Zhang D (2013) The UDP-glucuronate decarboxylase gene family in Populus: structure, expression, and association genetics. PLoS One 8:e60880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dym O, Eisenberg D (2001) Sequence-structure analysis of FAD-containing proteins. Protein Sci 10:1712–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eixelsberger T, Sykora S, Egger S, Brunsteiner M, Kavanagh KL, Oppermann U, Brecker L, Nidetzky B (2012) Structure and mechanism of human UDP-xylose synthase: evidence for a promoting role of sugar ring distortion in a three-step catalytic conversion of UDP-glucuronic acid. J Biol Chem 287:31349–31358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst C, Klaffke W (2003) Chemical synthesis of uridine diphospho-d-xylose and UDP-l-arabinose. J Org Chem 68:5780–5783

    Article  CAS  PubMed  Google Scholar 

  • Ginsburg V, Stumpf PK, Hassid WZ (1956) The isolation of uridine diphosphate derivatives of d-glucose, d-galactose, d-xylose, and l-arabinose from mung bean seedlings. J Biol Chem 223:977–983

    CAS  PubMed  Google Scholar 

  • Guo L, Kong JQ (2014) cDNA cloning and expression analysis of farnesyl pyrophosphate synthase from Ornithogalum saundersiae. Z Naturforsch C 69:259–270

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Chen X, Li L-N, Tang W, Pan Y-T, Kong J-Q (2016) Transcriptome-enabled discovery and functional characterization of enzymes related to (2S)-pinocembrin biosynthesis from Ornithogalum caudatum and their application for metabolic engineering. Microb Cell Fact 15:1–19

    Article  Google Scholar 

  • Guyett P, Glushka J, Gu X, Bar-Peled M (2009) Real-time NMR monitoring of intermediates and labile products of the bifunctional enzyme UDP-apiose/UDP-xylose synthase. Carbohydr Res 344:1072–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han SH, Kim BG, Yoon JA, Chong Y, Ahn JH (2014) Synthesis of flavonoid O-pentosides by Escherichia coli through engineering of nucleotide sugar pathways and glycosyltransferase. Appl Environ Microbiol 80:2754–2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harper AD, Bar-Peled M (2002) Biosynthesis of UDP-xylose. Cloning and characterization of a novel Arabidopsis gene family, UXS, encoding soluble and putative membrane-bound UDP-glucuronic acid decarboxylase isoforms. Plant Physiol 130:2188–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi T, Matsuda K (1981) Sugar nucleotides from suspension-cultured soybean cells. Biosci Biotechnol Biochem 45:2907–2908

    CAS  Google Scholar 

  • Hayashi T, Koyama T, Matsuda K (1988) Formation of UDP-xylose and xyloglucan in soybean golgi membranes. Plant Physiol 87:341–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • John KV, Schwartz NB, Ankel H (1977) UDP-glucuronate carboxy-lyase in cultured chondrocytes. J Biol Chem 252:6707–6710

    CAS  PubMed  Google Scholar 

  • Kalegari M, Cerutti ML, Macedo-Junior SJ, Bobinski F, Miguel MD, Eparvier V, Santos AR, Stien D, Miguel OG (2014) Chemical composition and antinociceptive effect of aqueous extract from Rourea induta Planch. leaves in acute and chronic pain models. J Ethnopharmacol 153:801–809

    Article  PubMed  Google Scholar 

  • Kim BG, Yang SM, Kim SY, Cha MN, Ahn JH (2015) Biosynthesis and production of glycosylated flavonoids in Escherichia coli: current state and perspectives. Appl Microbiol Biotechnol 99:2979–2988

    Article  CAS  PubMed  Google Scholar 

  • Kleiger G, Eisenberg D (2002) GXXXG and GXXXA motifs stabilize FAD and NAD(P)-binding rossmann folds through Cα–H···O hydrogen bonds and van der waals interactions. J Mol Biol 323:69–76

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Nakagawa H, Suda I, Miyagawa I, Matoh T (2002) Purification and cDNA cloning of UDP-d-glucuronate carboxy-lyase (UDP-d-xylose synthase) from pea seedlings. Plant Cell Physiol 43:1259–1265

    Article  CAS  PubMed  Google Scholar 

  • Kong JQ, Lu D, Wang ZB (2014) Molecular cloning and yeast expression of cinnamate 4-hydroxylase from Ornithogalum saundersiae baker. Molecules 19:1608–1621

    Article  PubMed  Google Scholar 

  • Li L-N, Kong J-Q (2016) Transcriptome-wide identification of sucrose synthase genes in Ornithogalum caudatum. RSC Adv 6:18778–18792

    Article  CAS  Google Scholar 

  • Mimaki Y, Kuroda M, Kameyama A, Sashida Y, Hirano T, Oka K, Maekawa R, Wada T, Sugita K, Beutler JA (1997) Cholestane glycosides with potent cytostatic activities on various tumor cells from Ornithogalum saundersiae bulbs. Bioorg Med Chem Lett. 7:633–636

    Article  CAS  Google Scholar 

  • Mølhøj M, Verma R, Reiter WD (2003) The biosynthesis of the branched-chain sugar D-apiose in plants: functional cloning and characterization of a UDP-d-apiose/UDP-d-xylose synthase from Arabidopsis. Plant J 35:693–703

    Article  PubMed  Google Scholar 

  • Oka T, Jigami Y (2006) Reconstruction of de novo pathway for synthesis of UDP-glucuronic acid and UDP-xylose from intrinsic UDP-glucose in Saccharomyces cerevisiae. FEBS J 273:2645–2657

    Article  CAS  PubMed  Google Scholar 

  • Oppermann U, Filling C, Hult M, Shafqat N, Wu X, Lindh M, Shafqat J, Nordling E, Kallberg Y, Persson B, Jörnvall H (2003) Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem-Biol Interact 143–144:247–253

    Article  PubMed  Google Scholar 

  • Pandey R, Malla S, Simkhada D, Kim B-G, Sohng J (2013) Production of 3-O-xylosyl quercetin in Escherichia coli. Appl Microbiol Biotechnol 97:1889–1901

    Article  CAS  PubMed  Google Scholar 

  • Pattathil S, Harper AD, Bar-Peled M (2005) Biosynthesis of UDP-xylose: characterization of membrane-bound AtUxs2. Planta 221:538–548

    Article  CAS  PubMed  Google Scholar 

  • Rodaway S, Marcus A (1979) Germination of soybean embryonic axes: nucleotide sugar metabolism and initiation of growth. Plant Physiol 64:975–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandermann H, Tisue GT, Grisebach H (1968) Biosynthesis of d-apiose IV. Formation of UDP-apiose from UDP-d-glucuronic acid in cell-free extracts of parsley (Apium petroselinum L.) and Lemna minor. BBA-Gen Subj 165:550–552

    Article  CAS  Google Scholar 

  • Suzuki K, Suzuki Y, Kitamura S (2003) Cloning and expression of a UDP-glucuronic acid decarboxylase gene in rice. J Exp Bot 54:1997–1999

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Watanabe K, Masumura T, Kitamura S (2004) Characterization of soluble and putative membrane-bound UDP-glucuronic acid decarboxylase (OsUXS) isoforms in rice. Arch Biochem Biophys 431:169–177

    Article  CAS  PubMed  Google Scholar 

  • Wagner GK, Pesnot T, Field RA (2009) A survey of chemical methods for sugar-nucleotide synthesis. Nat Prod Rep 26:1172–1194

    Article  CAS  PubMed  Google Scholar 

  • Wang Z-B, Chen X, Wang W, Cheng K-D, Kong J-Q (2014) Transcriptome-wide identification and characterization of Ornithogalum saundersiae phenylalanine ammonia lyase gene family. RSC Adv 4:27159–27175

    Article  CAS  Google Scholar 

  • Wellmann E, Grisebach H (1971) Purification and properties of an enzyme preparation from Lemna minor L. catalyzing the synthesis of UDP-apiose and UDP-d-xylose from UDP-d-glucuronic acid. BBA-Enzymology 235:389–397

    CAS  Google Scholar 

  • Wellmann E, Baron D, Grisebach H (1971) Two different enzymes for the biosynthesis of UDP-xylose from UDP-glucuronic acid in cell suspension cultures of parsley (Petroselinum hortense). Biochim Biophys Acta 244:1–6

    Article  CAS  PubMed  Google Scholar 

  • Yin S, Kong J-Q (2016) Transcriptome-guided discovery and functional characterization of two UDP-sugar 4-epimerase families involved in the biosynthesis of anti-tumor polysaccharides in Ornithogalum caudatum. RSC Adv 6:37370–37384

    Article  CAS  Google Scholar 

  • Zhang Q, Shirley N, Lahnstein J, Fincher GB (2005) Characterization and expression patterns of UDP-d-glucuronate decarboxylase genes in barley. Plant Physiol 138:131–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao MH, Jiang ZT, Liu T, Li R (2014) Flavonoids in Juglans regia L. leaves and evaluation of in vitro antioxidant activity via intracellular and chemical methods. The ScientificWorld J 2014:303878

    Google Scholar 

  • Zielinska-Pisklak MA, Kaliszewska D, Stolarczyk M, Kiss AK (2015) Activity-guided isolation, identification and quantification of biologically active isomeric compounds from folk medicinal plant Desmodium adscendens using high performance liquid chromatography with diode array detector, mass spectrometry and multidimensional nuclear magnetic resonance spectroscopy. J Pharm Biomed Anal 102:54–63

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Cheng KD and Wang W for providing the cultivated bulbs of Ornithogalum caudatum. This work was supported by Independent Subject of Key Project of State Key Laboratory of Bioactive Substance and Function of Natural Medicines (GTZA201404) and the Fundamental Research Funds for the Central Universities of Chinese Academy of Medical Sciences and Peking Union Medical College (2016ZX350001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Qiang Kong.

Ethics declarations

Conflict of interest

We have no competing interests.

Additional information

Communicated by P. Puigdomenech.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, S., Kong, JQ. Transcriptome-guided gene isolation and functional characterization of UDP-xylose synthase and UDP-d-apiose/UDP-d-xylose synthase families from Ornithogalum caudatum Ait. Plant Cell Rep 35, 2403–2421 (2016). https://doi.org/10.1007/s00299-016-2044-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-016-2044-5

Keywords

Navigation