Skip to main content
Log in

Spermine modulates the expression of two probable polyamine transporter genes and determines growth responses to cadaverine in Arabidopsis

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Two genes, LAT1 and OCT1 , are likely to be involved in polyamine transport in Arabidopsis. Endogenous spermine levels modulate their expression and determine the sensitivity to cadaverine.

Abstract

Arabidopsis spermine (Spm) synthase (SPMS) gene-deficient mutant was previously shown to be rather resistant to the diamine cadaverine (Cad). Furthermore, a mutant deficient in polyamine oxidase 4 gene, accumulating about twofold more of Spm than wild type plants, showed increased sensitivity to Cad. It suggests that endogenous Spm content determines growth responses to Cad in Arabidopsis thaliana. Here, we showed that Arabidopsis seedlings pretreated with Spm absorbs more Cad and has shorter root growth, and that the transgenic Arabidopsis plants overexpressing the SPMS gene are hypersensitive to Cad, further supporting the above idea. The transgenic Arabidopsis overexpressing L-Amino acid Transporter 1 (LAT1) absorbed more Cad and showed increased Cad sensitivity, suggesting that LAT1 functions as a Cad importer. Recently, other research group reported that Organic Cation Transporter 1 (OCT1) is a causal gene which determines the Cad sensitivity of various Arabidopsis accessions. Furthermore, their results suggested that OCT1 is involved in Cad efflux. Thus we monitored the expression of OCT1 and LAT1 during the above experiments. Based on the results, we proposed a model in which the level of Spm content modulates the expression of OCT1 and LAT1, and determines Cad sensitivity of Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aziz A, Martin-Tanguy J, Larher F (1997) Plasticity of polyamine metabolism associated with high osmotic stress in rape leaf discs and with ethylene treatment. Plant Growth Regul 21:153–163

    Article  CAS  Google Scholar 

  • Bunsupa S, Katayama K, Ikeura E, Oikawa A, Toyooka K, Saito K, Yamazaki M (2012) Lysine decarboxylase catalyzes the first step of quinolizidine alkaloid biosynthesis and coevolved with alkaloid production. Plant Cell 24:1202–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen SS (1998) A guide to the polyamines. Oxford University Press, Oxford

    Google Scholar 

  • Fuell C, Elliot KA, Hanfrey CC, Franceschetti M, Michael AJ (2010) Polyamine biosynthetic diversity in plants and algae. Plant Physiol Biochem 48:513–520

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Shinozaki K (2015) Polyamine transport systems in plants. In: Kusano T, Suzuki H (eds) Polyamine: a universal molecular nexus for growth, survival and specialised metabolism. Springer, Berlin, pp 179–185

    Google Scholar 

  • Fujita M, Fujita Y, Iuchi S et al (2012) Natural variation in a polyamine transporter determines paraquat tolerance in Arabidopsis. Proc Natl Acad Sci USA 109:6343–6347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higashi K, Imamura M, Fudo S, Uemura T, Saiki R, Hoshino T, Toida T, Kashiwagi K, Igarashi K (2014) Identification of functional amino acid residues involved in polyamine and agmatine transport by human organic cation transporter 2. PLoS One 7:e102234

    Article  Google Scholar 

  • Kamada-Nobusada T, Hayashi M, Fukazawa M, Sakakibara H, Nishimura M (2008) A putative peroxisomal polyamine oxidase, AtPAO4, is involved in polyamine catabolism in Arabidopsis thaliana. Plant Cell Physiol 49:1272–1282

    Article  CAS  PubMed  Google Scholar 

  • Kim DW, Watanabe K, Murayama C, Izawa S, Niitsu M, Michael AJ, Berberich T, Kusano T (2014) Polyamine oxidase 5 regulates Arabidopsis thaliana growth through a thermospermine oxidase activity. Plant Physiol 165:1575–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    Article  CAS  PubMed  Google Scholar 

  • Kusano T, Kim DW, Liu T, Berberich T (2015) Polyamine catabolism in plants. In: Kusano T, Suzuki H (eds) Polyamine: a universal molecular nexus for growth, survival and specialised metabolism. Springer, Berlin, pp 77–88

    Google Scholar 

  • Kuznetsov V, Shorina M, Aronova E, Stetsenko L, Rakitin V, Shevyakova N (2007) NaCl- and ethylene-dependent cadaverine accumulation and its possible protective role in the adaptation of the common ice plant to salt stress. Plant Sci 172:363–370

    Article  CAS  Google Scholar 

  • Lelandais-Briere C, Jovanovic M, Torres GAM, Perrin Y, Corre-Menguy F, Hartmann C (2007) Disruption of AtOCT1, an organic cation transporter gene, affects root development and carnitine-related responses in Arabidopsis. Plant J 51:154–164

    Article  CAS  PubMed  Google Scholar 

  • Li J, Mu J, Rai J, Fu F et al (2013) PARAQUAT RESISTANT1, a golgi-localized putative transporter protein, is involved in intracellular transport of paraquat. Plant Physiol 162:470–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigment of photosynthetic biomembranes. Method Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Liu T, Dobashi H, Kim DW, Sagor GHM, Niitsu M, Berberich T, Kusano T (2014) Arabidopsis mutant plants with diverse defects in polyamine metabolism show unequal sensitivity to exogenous cadaverine probably based on their spermine content. Physiol Mol Biol Plants 20:151–159

    Article  PubMed  PubMed Central  Google Scholar 

  • Michael JP (2008) Indolizine and quinolizidine alkaloids. Nat Prod Rep 25:139–165

    Article  CAS  PubMed  Google Scholar 

  • Naka Y, Watanabe K, Sagor GHM, Niitsu M, Pillai A, Kusano T, Takahashi Y (2010) Quantitative analysis of plant polyamines including thermospermine during growth and salinity stress. Plant Physiol Biochem 48:527–533

    Article  CAS  PubMed  Google Scholar 

  • Niitsu M, Samejima K (1986) Syntheses of a series of linear pentaamines with three and four methylene chain intervals. Chem Pharm Bull 34:1032–1038

    Article  CAS  Google Scholar 

  • Pottosin I (2015) Polyamine action on plant ion channels and pumps. In: Kusano T, Suzuki H (eds) Polyamines: A universal molecular nexus for growth, survival and specialised metabolism. Springer, Tokyo, pp 229–241

    Google Scholar 

  • Roth M, Obaindat A, Hagenbuch B (2012) OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol 165:1260–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagor GHM, Berberich T, Takahashi Y, Niitsu M, Kusano T (2013) The polyamine spermine protects Arabidopsis from heat stress-induced damage by increasing expression of heat shock-related genes. Transgenic Res 22:595–605

    Article  CAS  PubMed  Google Scholar 

  • Sagor GHM, Chawla P, Kim DW, Berberich T, Kojima S, Niitsu S, Kusano T (2015a) The polyamine spermine induces the unfolded protein response via the MAPK cascade in Arabidopsis. Front Plant Sci 6:687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagor GHM, Inoue M, Kim DW, Kojima S, Niitsu M, Berberich T, Kusano T (2015b) The polyamine oxidase from lycophyte Selaginella lepidophylla (SelPAO5), unlike that of angiosperms, back-converts thermospermine to norspermidine. FEBS Lett 589:3071–3078

    Article  CAS  PubMed  Google Scholar 

  • Sala-Rabanal M, Li DC, Dake GR, Kurata HT, Inyushin M, Skatchkov SN, Nichols CG (2013) Polyamine transport by the polyspecific organic cation transporters OCT1, OCT2 and OCT3. Mol Pharm 10:1450–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samejima K, Takeda Y, Kawase M, Okada M, Kyogoku Y (1984) Syntheses of 15N-enriched polyamines. Chem Pharm Bull (Tokyo) 32:3428–3435

    Article  CAS  Google Scholar 

  • Shabala S, Cuin TA, Pottosin I (2007) Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-selective cation channels. FEBS Lett 581:1993–1999

    Article  CAS  PubMed  Google Scholar 

  • Shevyakova NI, Rakitin VY, Duong DB, Sadomov NG, Kuznetsov VV (2001) Heat shock-induced cadaverine accumulation and translocation throughout the plant. Plant Sci 161:1125–1133

    Article  CAS  Google Scholar 

  • Shoji T, Hashimoto T (2015) Polyamine-derived alkaloids in plants: molecular elucidation of biosynthesis. In: Kusano T, Suzuki H (eds) Polyamine: a universal molecular nexus for growth, survival and specialised metabolism. Springer, Tokyo, pp 189–200

    Google Scholar 

  • Strohm A, Vaughn LM, Masson PH (2015) Natural variation in the expression of ORGANIC CATION TRANSPORTER 1 affects root length responses to cadaverine in Arabidopsis. J Exp Bot 66:853–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sziderics AH, Oufir M, Trognitz F, Kopecky D, Matusikova I, Hausman J-F, Wilhelm E (2010) Organ-specific defence strategies of pepper (Capsium annuum L.) during early phase of water deficit. Plant Cell Rep 29:295–305

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Kakehi J-I (2010) Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot 105:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiburcio AF, Altabella T, Bitrián M, Alcázar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240:1–18

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Drs. Miki Fujita and Kazuo Shinozaki (RIKEN, Japan) are acknowledged for providing the seeds of AtLAT1 overexpressed Arabidopsis lines and the rmv1 mutant. Dr. Matt Shenton is acknowledged for critically reading the manuscript. This work was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) to TK (26·04081, 15K14705). GHMS is supported by the JSPS postdoctoral fellowship for foreign researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomonobu Kusano.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest in this manuscript.

Additional information

Communicated by F. Sato.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 310 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagor, G.H.M., Berberich, T., Kojima, S. et al. Spermine modulates the expression of two probable polyamine transporter genes and determines growth responses to cadaverine in Arabidopsis. Plant Cell Rep 35, 1247–1257 (2016). https://doi.org/10.1007/s00299-016-1957-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-016-1957-3

Keywords

Navigation