Skip to main content

Advertisement

Log in

Identification of rice Di19 family reveals OsDi19-4 involved in drought resistance

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The OsDi19 proteins functioned as transcription factors and played crucial roles in response to abiotic stress. Overexpression of OsDi19 - 4 in rice increased drought tolerance by enhancing ROS-scavenging activity.

Abstract

Many transcription factors play crucial roles in plant responses to abiotic stress. Here, comprehensive sequence analysis suggested that the drought-induced 19 (Di19) gene family in rice genome contain seven members, and these proteins contained a well-conserved zinc-finger Di19 domain. Most OsDi19 proteins were mainly targeted to the nucleus and have transactivation activity in yeast. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that most OsDi19 proteins could form protein dimers. Expression analysis demonstrated that the OsDi19 genes were differentially and abundantly expressed in vegetative tissues, but expressed little in reproductive tissues and some of the OsDi19 genes were markedly induced by abiotic stresses and hormones in qRT-PCR analysis and microarray data. Overexpression of one stress-responsive gene, OsDi19-4, in rice resulted in significantly increased tolerance to drought stress compared with the wild type plants. Moreover, obviously increased ROS-scavenging ability was detected in the OsDi19-4-overexpressing plants under normal and drought stress conditions. These results suggested that the increased stress tolerance of OsDi19-4-overexpressing plants may be attributable to the enhanced ROS-scavenging activity. Taken together, these studies provide a detailed overview of the rice Di19 gene family, and suggest that the OsDi19 family may play crucial roles in the plant response to abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

GFP:

Green fluorescent protein

RFP:

Red fluorescent protein

YFP:

Yellow fluorescent protein

GUS:

β-glucuronidase

ORF:

Open reading frame

qRT-PCR:

Quantitative real-time polymerase chain reaction

RT-PCR:

Reverse transcriptase-polymerase chain reaction

References

  • Agarwal P, Arora R, Ray S, Singh AK, Singh VP, Takatsuji H, Kapoor S, Tyagi AK (2007) Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Mol Biol 65:467–485

    Article  CAS  PubMed  Google Scholar 

  • Amoutzias GD, Veron AS, Weiner J, Robinson-Rechavi M, Bornberg-Bauer E, Oliver SG, Robertson DL (2007) One billion years of bZIP transcription factor evolution: conservation and change in dimerization and DNA-binding site specificity. Mol Biol Evol 24:827–835

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Avanci NC, Luche DD, Goldman GH, Goldman MHS (2010) Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genet Mol Res 9:484–505

    Article  CAS  PubMed  Google Scholar 

  • Bart R, Chern M, Park C-J, Bartley L, Ronald PC (2006) A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts. Plant Methods 2:13

    Article  PubMed Central  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Burdach J, O’Connell MR, Mackay JP, Crossley M (2012) Two-timing zinc finger transcription factors liaising with RNA. Trends Biochem Sci 37:199–205

    Article  CAS  PubMed  Google Scholar 

  • Cassiday LA (2002) Having it both ways transcription factors that bind DNA and RNA. Nucleic Acids Res 30:4118–4126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ciftci-Yilmaz S, Mittler R (2008) The zinc finger network of plants. Cell Mol Life Sci 65:1150–1160

    Article  CAS  PubMed  Google Scholar 

  • Drechsel G, Raab S, Hoth S (2010) Arabidopsis zinc-finger protein 2 is a negative regulator of ABA signaling during seed germination. J Plant Physiol 167:1418–1421

    Article  CAS  PubMed  Google Scholar 

  • Englbrecht CC, Schoof H, Böhm S (2004) Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genom 5:39

    Article  Google Scholar 

  • Espinosa-Soto C, Immink RG, Angenent GC, Alvarez-Buylla ER, de Folter S (2014) Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein–protein interaction network. BMC Syst Biol 8:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Gosti F, Bertauche N, Vartaninan N, Giraudat J (1995) Abscisic acid-dependent and -independent regulation of gene expression by progressive drought in Arabidopsis thaliana. Mol Gen Genet 246:10–18

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  CAS  PubMed  Google Scholar 

  • Hu YF, Luscher B, Admon A, Mermod N, Tjian R (1990) Transcription factor AP-4 contains multiple dimerization domains that regulate dimer specificity. Genes Dev 4:1741–1752

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Sun S, Xu D et al (2012) A TFIIIA-type zinc finger protein confers multiple abiotic stress tolerances in transgenic rice (Oryza sativa L.). Plant Mol Biol 80:337–350

    Article  CAS  PubMed  Google Scholar 

  • Kang X, Chong J, Ni M (2005) HYPERSENSITIVE TO RED AND BLUE 1, a ZZ-type zinc finger protein, regulates phytochrome B-mediated red and cryptochrome-mediated blue light responses. Plant Cell 17:822–835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kubo K, Sakamoto A, Kobayashi A, Rybka Z, Kanno Y, Nakagawa H, Nishino T, Takatsuji H (1998) Cys2/His2 zinc-finger protein family of petunia: evolution and general mechanism of target-sequence recognition. Nucleic Acids Res 26:608–615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li G, Tai FJ, Zheng Y, Luo J, Gong SY, Zhang ZT, Li XB (2010a) Two cotton Cys2/His2-type zinc-finger proteins, GhDi19-1 and GhDi19-2, are involved in plant response to salt/drought stress and abscisic acid signaling. Plant Mol Biol 74:437–452

    Article  CAS  PubMed  Google Scholar 

  • Li S, Xu C, Yang Y, Xia G (2010b) Functional analysis of TaDi19A, a salt-responsive gene in wheat. Plant Cell Environ 33(1):117–129

    PubMed  Google Scholar 

  • Liu WX, Zhang FC, Zhang WZ, Song LF, Wu WH, Chen YF (2013a) Arabidopsis Di19 functions as a transcription factor and modulates PR1, PR2, and PR5 expressions in response to drought stress. Mol Plant 6:1487–1502

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Cui S, Wu F, Yan S, Lin X, Du X, Chong K, Schilling S, Theissen G, Meng Z (2013b) Functional conservation of MIKC*-type MADS box genes in Arabidopsis and rice pollen maturation. Plant Cell 25:1288–1303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luo X, Cui N, Zhu Y, Cao L, Zhai H, Cai H, Ji W, Wang X, Zhu D, Li Y, Bai X (2012) Over-expression of GsZFP1, an ABA-responsive C2H2-type zinc finger protein lacking a QALGGH motif, reduces ABA sensitivity and decreases stomata size. J Plant Physiol 169:1192–1202

    Article  CAS  PubMed  Google Scholar 

  • Milla MA, Townsend J, Chang IF, Cushman JC (2006) The Arabidopsis AtDi19 gene family encodes a novel type of Cys2/His2 zinc-finger protein implicated in ABA-independent dehydration, high-salinity stress and light signaling pathways. Plant Mol Biol 61:13–30

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plants Sci 7:405–410

    Article  CAS  Google Scholar 

  • Mizoi J, Yamaguchi-Shinozaki K (2013) Molecular approaches to improve rice abiotic stress tolerance. Methods Mol Biol 956:269–283

    Article  PubMed  Google Scholar 

  • Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiol 129:460–468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Razin SV, Borunova VV, Maksimenko OG, Kantidze OL (2012) Cys2His2 zinc finger protein family: classification, functions, and major members. Biochemistry (Moscow) 77:217–226

    Article  CAS  Google Scholar 

  • Sakamoto H, Araki T, Meshi T, Iwabuchi M (2000) Expression of a subset of the Arabidopsis Cys(2)/His(2)-type zinc-finger protein gene family under water stress. Gene 248:23–32

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol 136:2734–2746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025

    Article  CAS  PubMed  Google Scholar 

  • Sun SJ, Guo SQ, Yang X, Bao YM, Tang HJ, Sun H, Huang J, Zhang HS (2010) Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J Exp Bot 61:2807–2818

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun X, Kang X, Ni M (2012) Hypersensitive to red and blue 1 and its modification by protein phosphatase 7 are implicated in the control of Arabidopsis stomatal aperture. PLoS Genet 8:e1002674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taniguchi S, Hosokawa-Shinonaga Y, Tamaoki D, Yamada S, Akimitsu K, Gomi K (2014) Jasmonate induction of the monoterpene linalool confers resistance to rice bacterial blight and its biosynthesis is regulated by JAZ protein in rice. Plant Cell Environ 37:451–461

    Article  CAS  PubMed  Google Scholar 

  • Tsai RYL, Reed RR (1998) Identification of DNA recognition sequences and protein interaction domains of the Multiple-Zn-Finger Protein Roaz. Mol Cell Biol 18:6447–6456

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsugeki R, Ditengou FA, Sumi Y, Teale W, Palme K, Okada K (2009) NO VEIN mediates auxin-dependent specification and patterning in the Arabidopsis embryo, shoot, and root. Plant Cell 21:3133–3151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14:S153–S164

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walter M, Chaban C, Schutze K, Batistic O, Weckermann K, Nake C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ziemienowicz A, Merkle T, Schoumacher F, Hohn B, Rossi L (2001) Import of Agrobacterium T-DNA into plant nuclei: two distinct functions of VirD2 and VirE2 proteins. Plant Cell 13:369–383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hao Du for constructive comments and critical review of the manuscript. We also acknowledge Dr. Haoli Ma for providing guidance on bioinformatics analysis. This research was supported by the National High Technology Research and Development Program of China (2011AA10A101), National Natural Science Foundation of China (31371236).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingguo Zhu or Wenchao Huang.

Additional information

Communicated by Kang Chong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 907 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yu, C., Chen, C. et al. Identification of rice Di19 family reveals OsDi19-4 involved in drought resistance. Plant Cell Rep 33, 2047–2062 (2014). https://doi.org/10.1007/s00299-014-1679-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1679-3

Keywords

Navigation