Skip to main content
Log in

OsiSAP1 overexpression improves water-deficit stress tolerance in transgenic rice by affecting expression of endogenous stress-related genes

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key Message

OsiSAP1, an A20/AN1 zinc-finger protein, confers water-deficit stress tolerance at different stages of growth by affecting expression of several endogenous genes in transgenic rice.

Abstract

Transgenic lines have been generated from rice constitutively expressing OsiSAP1, an A20/AN1 zinc-finger containing stress-associated protein gene from rice, driven by maize UBIQUITIN gene promoter and evaluated for water-deficit stress tolerance at different stages of growth. Their seeds show early germination and seedlings grow better under water-deficit stress compared to non-transgenic (NT) rice. Leaves from transgenic seedlings showed lesser membrane damage and lipid peroxidation under water-deficit stress. Relatively lower rate of leaf water loss has been observed in detached intact leaves from transgenic plants during late vegetative stage. Delayed leaf rolling and higher relative water content were also observed in transgenic plants under progressive water-deficit stress during reproductive developmental stage. Although reduction in grain yield is observed under unstressed condition, the relative water-deficit stress-induced yield losses are lower in transgenic rice vis-à-vis NT plants thereby resulting in yield loss protection. Transcriptome analysis suggests that overexpression of OsiSAP1 in transgenic rice results in altered expression of several endogenous genes including those coding for transcription factors, membrane transporters, signaling components and genes involved in metabolism, growth and development. A total of 150 genes were found to be more than twofold up-regulated in transgenic rice of which 43 genes are known to be involved in stress response. Our results suggest that OsiSAP1 is a positive regulator of water-deficit stress tolerance in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

MDA:

Malondialdehyde

MS:

Murashige and Skoog

NT:

Non-transgenic

RGM:

Rice growth medium

SAP:

Stress associated protein

References

  • Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F (2012) Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 30(3):524–540

    Article  CAS  PubMed  Google Scholar 

  • Asano T, Hayashi N, Kobayashi M, Aoki N, Miyao A, Mitsuhara I, Ichikawa H, Komatsu S, Hirochika H, Kikuchi S, Ohsugi R (2012) A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J 69(1):26–36

    Article  CAS  PubMed  Google Scholar 

  • Bailey NTJ (1994) Statistical methods in biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Bajaj S, Mohanty A (2005) Recent advances in rice biotechnology-towards genetically superior transgenic rice. Plant Biotechnol J 3(3):275–307

    Article  CAS  PubMed  Google Scholar 

  • Begg JE (1980) Morphological adaptation of leaves to water stress. In: Turner NC, Kramer RJ (eds) Adaptation of plants to water and high temperature stress. Wiley, New York, pp 33–42

    Google Scholar 

  • Ben Saad R, Zouari N, Ben Ramdhan W, Azaza J, Meynard D, Guiderdoni E, Hassairi A (2010) Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger “AlSAP” gene isolated from the halophyte grass Aeluropus littoralis. Plant Mol Biol 72(1-2):171–190

    Article  CAS  PubMed  Google Scholar 

  • Ben Saad R, Ben Ramdhan W, Zouari N, Azaza J, Mieulet D, Guiderdoni E, Ellouz R, Hassairi A (2012a) Marker-free transgenic durum wheat cv. Karim expressing the AlSAP gene exhibits a high level of tolerance to salinity and dehydration stresses. Mol Breed 30(1):521–523

    Article  CAS  Google Scholar 

  • Ben Saad R, Fabre D, Mieulet D, Meynard D, Dingkuhn M, Al-Doss A, Guiderdoni E, Hassairi A (2012b) Expression of the Aeluropus littoralis AlSAP gene in rice confers broad tolerance to abiotic stresses through maintenance of photosynthesis. Plant Cell Environ 35(3):626–643

    Article  PubMed  Google Scholar 

  • Boonjung H, Fukai S (1999) Effects of soil water deficit at different growth stages on rice growth and yield under upland conditions. 2. Phenology, biomass production and yield. Field Crops Res 48(1):47–55

    Article  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448

    Article  CAS  PubMed  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA 101(26):9909–9914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Charrier A, Planchet E, Cerveau D, Gimeno-Gilles C, Verdu I, Limami AM, Lelievre E (2012) Overexpression of a Medicago truncatula stress-associated protein gene (MtSAP1) leads to nitric oxide accumulation and confers osmotic and salt stress tolerance in transgenic tobacco. Planta 236(2):567–577

    Article  CAS  PubMed  Google Scholar 

  • Chaudhury A, Maheshwari SC, Tyagi AK (1995) Transient expression of GUS gene in intact seed embryo of indica rice after electroporation-mediated gene delivery. Plant Cell Rep 14(4):215–220

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Han S, Shin D, Lee S (2012) Polyubiquitin recognition by AtSAP5, an A20-type zinc finger containing protein from Arabidopsis thaliana. Biochem Biophys Res Commun 419(2):436–440

    Article  CAS  PubMed  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18(4):675–689

    Article  CAS  PubMed  Google Scholar 

  • Ciftci-Yilmaz S, Mittler R (2008) The zinc finger network of plants. Cell Mol Life Sci 65(7–8):1150–1160

    Article  CAS  PubMed  Google Scholar 

  • Cooper B, Clarke JD, Budworth P, Kreps J, Hutchison D, Park S, Guimil S, Dunn M, Luginbuhl P, Ellero C, Goff SA, Glazebrook J (2003) A network of rice genes associated with stress response and seed development. Proc Natl Acad Sci USA 100(8):4945–4950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Degenkolbe T, Do PT, Kopka J, Zuther E, Hincha DK, Kohl KI (2013) Identification of drought tolerance markers in a diverse population of rice cultivars by expression and metabolite profiling. PLoS ONE 8(5):e63637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dey MM, Upadhyaya HK (1996) Yield loss due to drought, cold and submergence in Asia, In: Evenson RE, Herdt RW, Hossain M (ed) Rice research in Asia: progress and priorities. CAB International, Wallingford and IRRI, Philippines, pp 291–303

  • Dixit AR, Dhankher OP (2011) A novel stress-associated protein ‘AtSAP10’ from Arabidopsis thaliana confers tolerance to nickel, manganese, zinc, and high temperature stress. PLoS ONE 6(6):e20921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99(25):15898–15903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010a) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010b) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5(1):26–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gimeno-Gilles C, Gervais ML, Planchet E, Satour P, Limami AM, Lelievre E (2011) A stress-associated protein containing A20/AN1 zinc-finger domains expressed in Medicago truncatula seeds. Plant Physiol Biochem 49(3):303–310

    CAS  PubMed  Google Scholar 

  • Giri J, Vij S, Dansana PK, Tyagi AK (2011) Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytol 191(3):721–732

    Article  CAS  PubMed  Google Scholar 

  • Giri J, Dansana PK, Kothari KS, Sharma G, Vij S, Tyagi AK (2013) SAPs as novel regulators of abiotic stress response in plants. BioEssays 35(7):639–648

    Article  CAS  PubMed  Google Scholar 

  • Golldack D, Luking I, Yang O (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30(8):1383–1391

    Article  CAS  PubMed  Google Scholar 

  • Hargurdeep SS, Sylvie L (1997) Injuries to reproductive development under water stress, and their consequences for crop productivity. J Crop Prod 1(1):223–248

    Article  Google Scholar 

  • Hayano-Kanashiro C, Calderon-Vazquez C, Ibarra-Laclette E, Herrera-Estrella L, Simpson J (2009) Analysis of gene expression and physiological responses in three Mexican maize landraces under drought stress and recovery irrigation. PLoS ONE 4(10):e7531

    Article  PubMed Central  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    Article  CAS  PubMed  Google Scholar 

  • Heyninck K, Beyaert R (2005) A20 inhibits NF-kappaB activation by dual ubiquitin-editing functions. Trends Biochem Sci 30(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61(6):1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Hsiao TC, O’Toole JC, Yambao EB, Turner NC (1984) Influence of osmotic adjustment on leaf rolling and tissue death in rice (Oryza sativa L.). Plant Physiol 75(2):338–341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103(35):12987–12992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang J, Teng L, Li L, Liu T, Chen D, Xu LG, Zhai Z, Shu HB (2004) ZNF216 is an A20-like and IkappaB kinase gamma-interacting inhibitor of NFkappaB activation. J Biol Chem 279(16):16847–16853

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Wang MM, Jiang Y, Bao YM, Huang X, Sun H, Xu DQ, Lan HX, Zhang HS (2008) Expression analysis of rice A20/AN1-type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance. Gene 420(2):135–144

    Article  CAS  PubMed  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KH (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29(3):300–311

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal P, Ni J, Yap I, Ware D, Spooner W, Youens-Clark K, Ren L, Liang C, Zhao W, Ratnapu K, Faga B, Canaran P, Fogleman M, Hebbard C, Avraham S, Schmidt S, Casstevens TM, Buckler ES, Stein L, McCouch S (2006) Gramene: a bird’s eye view of cereal genomes. Nucleic Acids Res 34 (Database issue):D717–D723

  • Jin Y, Wang M, Fu J, Xuan N, Zhu Y, Lian Y, Jia Z, Zheng J, Wang G (2007) Phylogenetic and expression analysis of ZnF-AN1 genes in plants. Genomics 90(2):265–275

    Article  CAS  PubMed  Google Scholar 

  • Kang M, Fokar M, Abdelmageed H, Allen RD (2011) Arabidopsis SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity. Plant Mol Biol 75(4–5):451–466

    Article  CAS  PubMed  Google Scholar 

  • Kanneganti V, Gupta AK (2008) Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol 66(5):445–462

    Article  CAS  PubMed  Google Scholar 

  • Kathuria H, Giri J, Tyagi H, Tyagi AK (2007) Advances in transgenic rice biotechnology. Crit Rev Plant Sci 26(2):65–103

    Article  CAS  Google Scholar 

  • Kathuria H, Giri J, Nataraja KN, Murata N, Udayakumar M, Tyagi AK (2009) Glycinebetaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes. Plant Biotechnol J 7(6):512–526

    Article  CAS  PubMed  Google Scholar 

  • Li X, Cai W, Zhang S, Xu L, Chen P, Wang J (2011) Cloning and expression pattern of a zinc finger protein gene ShSAP1 in Saccharum officinarum. Sheng Wu Gong Cheng Xue Bao 27(6):868–875

    CAS  PubMed  Google Scholar 

  • Liu K, Wang L, Xu Y, Chen N, Ma Q, Li F, Chong K (2007) Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta 226(4):1007–1016

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Xu Y, Xiao J, Ma Q, Li D, Xue Z, Chong K (2011) OsDOG, a gibberellin-induced A20/AN1 zinc-finger protein, negatively regulates gibberellin-mediated cell elongation in rice. J Plant Physiol 168(10):1098–1105

    Article  CAS  PubMed  Google Scholar 

  • Maclean JL, Dawe DC, B. Hardy B, Hettel GP (2002) Rice Almanac, CABI Publishing. Nosworthy Way, Wallingford, UK

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819(2):86–96

    Article  CAS  PubMed  Google Scholar 

  • Mohanty A, Sarma NP, Tyagi AK (1999) Agrobacterium-mediated high frequency transformation of an elite indica rice variety Pusa Basmati 1 and transmission of the transgenes to R2 progeny. Plant Sci 147(2):127–137

    Article  CAS  Google Scholar 

  • Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N, Tyagi AK (2002) Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor Appl Genet 106(1):51–57

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA 101(16):6309–6314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51(4):617–630

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819(2):97–103

    Article  CAS  PubMed  Google Scholar 

  • Piao HL, Xuan YH, Park SH, Je BI, Park SJ, Kim CM, Huang J, Wang GK, Kim MJ, Kang SM, Lee IJ, Kwon TR, Kim YH, Yeo US, Yi G, Son D, Han CD (2010) OsCIPK31, a CBL-interacting protein kinase is involved in germination and seedling growth under abiotic stress conditions in rice plants. Mol Cells 30(1):19–27

    Article  CAS  PubMed  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133(4):1755–1767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramachandra Reddy A, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161(11):1189–1202

    Article  PubMed  Google Scholar 

  • Ray S, Dansana PK, Bhaskar A, Giri J, Kapoor S, Khurana JP, Tyagi AK (2008) Emerging trends in functional genomics for stress tolerance in crop plants. In: Heribert H (ed) Plant stress biology. Wiley-Blackwell, Weinheim, pp 37–63

    Google Scholar 

  • Ray S, Dansana PK, Giri J, Deveshwar P, Arora R, Agarwal P, Khurana JP, Kapoor S, Tyagi AK (2011) Modulation of transcription factor and metabolic pathway genes in response to water-deficit stress in rice. Funct Integr Genomics 11(1):157–178

    Article  CAS  PubMed  Google Scholar 

  • Roberts CS, Rajagopal S, Smith LA, Nguyen TA, Yang W, Nugroho S, Ravi KS, Vijaychandra K, Harcourt RL, Dransfield L, Desamero N, Slamet I, Hajdukiewicz P, Svab Z, Maliga P, Mayer JE, Keese P, Killian KA, Jefferson RA (1997) A comprehensive set of modular vectors for advanced manipulations and efficient transformation of plants by both Agrobacterium and direct DNA uptake methods. pCAMBIA vector release manual, version 3.05

  • Sarvestani ZT, Pirdashti H, Sanavy SA, Balouchi H (2008) Study of water stress effects in different growth stages on yield and yield components of different rice (Oryza sativa L.) cultivars. Pak J Biol Sci 11(10):1303–1309

    Article  PubMed  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31(3):279–292

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10(3):296–302

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Priya P, Jain M (2013) Modified expression of an auxin-responsive rice CC-type glutaredoxin gene affects multiple abiotic stress responses. Planta 238(5):871–884

    Article  CAS  PubMed  Google Scholar 

  • Singh BN, Mackill DJ (1991) Genetics of leaf rolling under drought stress. Rice genetics II proceedings of the second international rice genetics symposium. IRRI, Manila, pp 159–166

    Google Scholar 

  • Sreedharan S, Shekhawat UK, Ganapathi TR (2012) MusaSAP1, a A20/AN1 zinc finger gene from banana functions as a positive regulator in different stress responses. Plant Mol Biol 80(4–5):503–517

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Sopory SK, Kavi Kishor PB (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388(1–2):1–13

    Article  CAS  PubMed  Google Scholar 

  • Stroher E, Wang XJ, Roloff N, Klein P, Husemann A, Dietz KJ (2009) Redox-dependent regulation of the stress-induced zinc-finger protein SAP12 in Arabidopsis thaliana. Mol Plant 2(2):357–367

    Article  PubMed  Google Scholar 

  • Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics 284(3):173–183

    Article  CAS  PubMed  Google Scholar 

  • Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9(2):189–195

    Article  CAS  PubMed  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45(4):523–539

    Article  CAS  PubMed  Google Scholar 

  • Vij S, Tyagi AK (2006) Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger(s) in rice and their phylogenetic relationship with Arabidopsis. Mol Genet Genomics 276(6):565–575

    Article  CAS  PubMed  Google Scholar 

  • Vij S, Tyagi AK (2008) A20/AN1 zinc-finger domain-containing proteins in plants and animals represent common elements in stress response. Funct Integr Genomics 8(3):301–307

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhang H, Gao F, Li J, Li Z (2007) Comparison of gene expression between upland and lowland rice cultivars under water stress using cDNA microarray. Theor Appl Genet 115(8):1109–1126

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Irazzary RA, Gentleman R, Murillo FM, Spencer F (2004) A model based background adjustment for oligonucleotide expression arrays. Johns Hopkins University, Dept of Biostatistics Working Papers Working Paper 1

  • Xiang Y, Huang Y, Xiong L (2007) Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144(3):1416–1428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148(4):1938–1952

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115(1):35–46

    Article  CAS  PubMed  Google Scholar 

  • Xiao BZ, Chen X, Xiang CB, Tang N, Zhang QF, Xiong LZ (2009) Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant 2(1):73–83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25(2):131–139

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(Suppl):S165–S183

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xuan NJY, Zhang H, Xie Y, Liu Y, Wang G (2011) A putative maize zinc-finger protein gene, ZmAN13, participates in abiotic stress response. Plant Cell Tissue Organ Cult 107:101–112

    Article  CAS  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ, Kusano T (2007) A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys Res Commun 352(2):486–490

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Kong Z, Omo-Ikerodah E, Xu W, Li Q, Xue Y (2008) Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.). J Genet Genomics 35(9):531–543

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Forno DA, Cock SH, Gomez KA (1976) Routine procedure for growing rice plants in culture solution. In: Yoshida S (ed) Laboratory manual for physiological studies of rice. IRRI, Manila, pp 3367–3374

    Google Scholar 

  • Zahur M, Maqbool A, Irfan M, Jamal A, Shahid N, Aftab B, Husnain T (2012) Identification and characterization of a novel gene encoding myb-box binding zinc finger protein in Gossypium arboreum. Biol Plant 56(4):641–647

    Article  CAS  Google Scholar 

  • Zhou J, Wang X, Jiao Y, Qin Y, Liu X, He K, Chen C, Ma L, Wang J, Xiong L, Zhang Q, Fan L, Deng XW (2007) Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63(5):591–608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the Department of Biotechnology, Government of India. PKD and KSK are grateful to University Grants Commission and Council of Scientific and Industrial Research, respectively, for providing research fellowships during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhilesh K. Tyagi.

Additional information

Communicated by A. Dhingra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 46 kb)

Supplementary material 2 (DOCX 35 kb)

Supplementary material 3 (DOCX 39 kb)

Supplementary material 4 (DOCX 20 kb)

Supplementary material 5 (DOCX 12 kb)

Supplementary material 6 (DOCX 46 kb)

Supplementary material 7 (DOCX 48 kb)

Supplementary figure legends

Supplementary Fig. 1 Confirmation of transgenic (S2, S3, S10, S105) plants overexpressing OsiSAP1 by PCR of genomic DNA using primers for hygromycin resistance gene (hpt). NT, untransformed control plant; +Ve, plasmid for plant transformation was used as template

Supplementary Fig. 2 Effect of hyperosmotic stress (400 mM mannitol) on seed germination of non-transgenic (NT) and transgenic (S2, S3, S10, S105) rice overexpressing OsiSASP1. Dehusked rice seeds were surface-sterilized and sown on cotton bed saturated with 400 mannitol. Taking radicle and plumule emergence as criteria for seed germination, number of germinated seeds was counted for eight consecutive days. Standard error bar is shown for variation in two independent experiments

Supplementary Fig. 3 Rate of leaf water loss under water-deficit stress in non-transgenic (NT) and transgenic (S2, S3, S10, S105) rice overexpressing OsiSAP1. Data points represent mean ± SE for relative fresh weight of detached intact leaves in two independent experiment (N = 5)

Supplementary tables

Supplementary Table 1 Nucleotide sequences for primers used for confirmation of transgene integration in transgenic rice and evaluation of gene expression analysis by Q-PCR

Supplementary Table 2 Segregation analysis of hygromycin resistance gene (hpt) in T1 generation of transgenic rice overexpressing OsiSAP1

Supplementary Table 3 Microarray expression values and functional categories of genes up-regulated (fold change ≥ 2 and P value < 0.05) in transgenic rice (line S3) overexpressing OsiSAP1 as compared to non-transgenic (NT) plant

Supplementary Table 4 Microarray expression values and functional categories of genes down-regulated (fold change ≥ 2 and P value < 0.05) in transgenic rice (line S3) overexpressing OsiSAP1 as compared to non-transgenic (NT) plant

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dansana, P.K., Kothari, K.S., Vij, S. et al. OsiSAP1 overexpression improves water-deficit stress tolerance in transgenic rice by affecting expression of endogenous stress-related genes. Plant Cell Rep 33, 1425–1440 (2014). https://doi.org/10.1007/s00299-014-1626-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1626-3

Keywords

Navigation