Skip to main content
Log in

Hormone-regulated inflorescence induction and TFL1 expression in Arabidopsis callus in vitro

  • Cell Biology and Morphogenesis
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

To study hormone-regulated inflorescence development, we established the in vitro regeneration system of Arabidopsis inflorescences in the presence of cytokinin and auxin. Media containing a combination of thidiazuron (TDZ) and 2,4-dichlorophenoxyacetic acid (2,4-D) were used to induce callus formation. Higher frequencies of calli were obtained by using the inflorescence stems as explants. After transferring the calli to media containing a combination of zeatin and indole-3-acetic acid (IAA), the inflorescences were induced from the calli. The morphology of regenerated inflorescences was similar to that of inflorescences in plants; however, flowers of regenerated inflorescences often lacked a few floral organs. Furthermore, TFL1, a gene involved in floral transition in Arabidopsis, was activated during the inflorescence induction. Our results suggest that the TFL1 gene plays an important role in hormone-regulated inflorescence formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357–3365

    Article  PubMed  CAS  Google Scholar 

  • An YR, Li XG, Su HY, Zhang XS (2004) Pistil induction by hormones from the callus of Oryza sativa in vitro. Plant Cell Rep 23:448–452

    Article  PubMed  CAS  Google Scholar 

  • Angenent GC, Franken J, Busscher M, van Dijken A, van Went JL, Dons HJM, van Tunen AJ (1995) A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7:1569–1582

    Article  PubMed  CAS  Google Scholar 

  • Blázquez MA, Green R, Nilsson O, Sussman MR, Weigel D (1998) Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 10:791–800

    Article  PubMed  Google Scholar 

  • Bonhomme F, Kurz B, Melzer S, Bernier G, Jacqmard A (2000) Cytokinin and gibberellin activate SaMADS A, a gene apparently involved in regulation of the floral transition in Sinapisalba. Plant J 24:103–111

    Article  PubMed  CAS  Google Scholar 

  • Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80–83

    Article  PubMed  CAS  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  PubMed  CAS  Google Scholar 

  • Colombo L, Franken J, Koetje E, van Went J, Dons HJM, Angenent GC, van Tunen AJ (1995) The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7:1859–1868

    Article  PubMed  CAS  Google Scholar 

  • Izhaki A, Borochov A, Zamski E Weiss D (2002) Gibberellin regulates post-microsporogenesis processes in petunia anthers. Physiol Plant 115:442–447

    Article  PubMed  CAS  Google Scholar 

  • Kaneko M, Inukai Y, Ueguchi-Tanaka M, Itoh H, Izawa T, Kobayashi Y, Hattori T, Miyao A, Hirochika H, Ashikari M, Matsuoka M (2004) Loss-of-function mutations of the rice GAMYB gene impair α-amylase expression in aleurone and flower development. Plant Cell 16:33–44

    Article  PubMed  CAS  Google Scholar 

  • King RW, Moritz T, Evans LT, Junttila O, Herlt AJ (2001) Long-day induction of flowering in Lolium temulentum involves sequential increases in specific gibberellins at the shoot apex. Plant Physiol 127:624–632

    Article  PubMed  CAS  Google Scholar 

  • Li QZ, Li XG, Bai SN, Lu WL, Zhang XS (2002) Isolation of HAG1 and its regulation by plant hormones during in vitro floral organogenesis in Hyacinthus orientalis L. Planta 215:533–540

    Article  PubMed  CAS  Google Scholar 

  • Lu WL (2003) Control of in vitro regeneration of individual reproductive and vegetative organs in Dracaena fragrans cv. massangeana Hort.—regularities of the direct regeneration of individual organs in vitro. Acta Botanica Sinica 45:1453–1464

    Google Scholar 

  • Lu WL (2002) Direct regeneration of inflorescence from callus in Dracaena fragrans cv. Massangeana Hort. Acta Botanica Sinica 44:113–116

    CAS  Google Scholar 

  • Lu W, Enomoto K, Fukunaga Y, Kuo C (1988) Regeneration of tapales, stamens and ovules in explants from perianth of Hyacinthus orientalis L. Importance of explant age and exogenous hormones. Planta 175:478–484

    Article  CAS  Google Scholar 

  • Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M (1998) Arabidopsis thaliana: a model plant for genome analysis. Science 282:678–682

    Article  Google Scholar 

  • Murch SJ, Saxena PK (2001) Molecular fate of thidiazuron and its effects on auxin transport in hypocotyls tissues of Pelargonium × hortorum Bailey. Plant Growth Regul 35:269–275

    Article  CAS  Google Scholar 

  • Okamuro JK, Szeto W, Lotys-Prass C, Jofuku KD (1997) Photo and hormonal control of meristem identity in Arabidopsis flower mutants apetala2 and apetala1. Plant Cell 9:37–47

    Article  PubMed  CAS  Google Scholar 

  • Parcy F, Bomblies K, Weigel D (2002) Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis. Development 129:2519–2527

    PubMed  CAS  Google Scholar 

  • Shannon S, Meeks-Wagner DR (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3:877–892

    Article  PubMed  CAS  Google Scholar 

  • Su HY, Li QZ, Li XG, Zhang XS (2005) Characterization and expression analysis of a MADS box gene, HoMADS2, in Hyacinthus orientalis L. Acta Genetica Sinica 32:1191–1198

    PubMed  Google Scholar 

  • Takada S, Goto K (2003) TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell 15:2856–2865

    Article  PubMed  CAS  Google Scholar 

  • Woodward AW, Bartel B (2004) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  Google Scholar 

  • Wu BH, Zheng YL, Liu DC, Zhou YH, Yan ZH (2003) Unisexual pistillate flower regeneration in immature embryo culture of wheat. Acta Botanica Sinica 45:452–459

    Google Scholar 

  • Xu HY, Li XG, Li QZ, Bai SN, Lu WL, Zhang XS (2004) Characterization of HoMADS1 and its induction by plant hormones during in vitro ovule development in Hyacinthus orientalis L. Plant Mol Biol 55:209–220

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky MF, Ma H, Bowman JL, Drews G, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature 346:35–39

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Ito T, Zhao YX, Peng JR, Kumar P, Meyerowitz EM (2004) Floral homeotic genes are targets of gibberellin signaling in flower development. Development 101:7827–7832

    CAS  Google Scholar 

Download references

Acknowledgement

X.S. Zhang was supported by the National Natural Science Foundation of China (30370143) for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. S. Zhang.

Additional information

Communicated by R. Schmidt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, C.M., Zhu, S.S., Li, X.G. et al. Hormone-regulated inflorescence induction and TFL1 expression in Arabidopsis callus in vitro. Plant Cell Rep 25, 1133–1137 (2006). https://doi.org/10.1007/s00299-006-0165-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0165-y

Keywords

Navigation