Skip to main content
Log in

Thermoresponsive, and reversibly emissive, core–shell nanogel composed of PNIPAM and carbon nanodots

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

We prepared a core–shell structured nanogel composed of carbon nanodots (C-dots), fluorescein, and poly(N-isopropylacrylamide) (PNIPAM) via emulsion copolymerization. The hybrid nanogel material was responsive to temperature as an emissive hybrid material and showed reversible and ratiometric changes in fluorescence emission according to temperature cycles at 25 and 45 °C, resulting from the shrinking of the PNIPAM copolymer chains with temperature variation. Dynamic light scattering, transmission electron microscopy were used to characterize the morphology and size of the particles. The hybrid nanogel was sensitive enough to temperature to be promising in biological application, such as temperature-sensitive drug delivery system and bioimaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pennadam SS, Firman K, Alexander DC, Gýrecki J (2004) Protein-polymer nano-machines. Towards synthetic control of biological processes. J Nanobiotechnol 2:8–14

    Article  Google Scholar 

  2. Hong SW, Kim DY, Lee JU, Jo WH (2009) Synthesis of polymeric temperature sensor based on photophysical property of fullerene and thermal sensitivity of poly (N-isopropylacrylamide). Macromolecules 42:2756–2761

    Article  CAS  Google Scholar 

  3. Shiraishi Y, Miyamoto R, Hirai T (2008) A hemicyanine-conjugated copolymer as a highly sensitive fluorescent thermometer. Langmuir 24:4273–4279

    Article  CAS  Google Scholar 

  4. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744

    Article  CAS  Google Scholar 

  5. Xu XY, Ray R, Gu YL, Ploehn HJ, Gearhear L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737

    Article  CAS  Google Scholar 

  6. Liu HP, Ye T, Mao CD (2007) Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed 46:6473–6475

    Article  CAS  Google Scholar 

  7. Yang Y, Cui J, Zheng M, Hu C, Tan S, Xiao Y, Yang Q, Liu Y (2012) One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun 48:380–382

    Article  CAS  Google Scholar 

  8. Kim Y, Jang G, Lee TS (2015) New fluorescent metal-ion detection using a paper-based sensor strip containing tethered rhodamine carbon nanodots. ACS Appl Mater Interfaces 7:15649–15657

    Article  CAS  Google Scholar 

  9. Cao L, Wang X, Meziani MJ, Lu FS, Wang HF, Luo PJG, Lin Y, Harruff BA, Veca LM, Murray D, Xie SY, Sun YP (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129:11318–11319

    Article  CAS  Google Scholar 

  10. Gokus T, Nalr RR, Bonettl A, Bohmler M, Lombardo A, Novoselov KS, Gelm AK, Ferrarl AC, Harschuh A (2009) Making graphene luminescent by oxygen plasma treatment. ACS Nano 3:3963–3968

    Article  CAS  Google Scholar 

  11. Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686–3699

    Article  CAS  Google Scholar 

  12. Ray SC, Saha A, Jana NR, Sarkar R (2009) Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C 113:18546–18551

    Article  CAS  Google Scholar 

  13. Zhang P, Li W, Zhai X, Liu C, Dai L, Liu W (2012) A facile and versatile approach to biocompatible “fluorescent polymers” from polymerizable carbon nanodots. Chem Commun 48:10431–10433

    Article  CAS  Google Scholar 

  14. Ozay O (2014) Synthesis and characterization of novel pH-responsive poly (2-hydroxylethyl methacrylate-co-N-allylsuccinamic acid) hydrogels for drug delivery. J Appl Polym Sci 131:39660

    Article  Google Scholar 

  15. Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang HF, Luo PJG, Yang H, Kose ME, Chen BL, Veca LM, Xie SY (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757

    Article  CAS  Google Scholar 

  16. Yoo HS (2007) Photo-cross-linkable and thermo-responsive hydrogels containing chitosan and pluronic for sustained release of human growth hormone (hGH). J Biomater Sci Polym Ed 18:1429–1441

    Article  CAS  Google Scholar 

  17. Tagit O, Jańczewski D, Tomczak N, Han MY, Herek JL, Vancso GJ (2010) Nanostructured thermoresponsive quantum dot/PNIPAM assemblies. Eur Polym J 46:1397–1403

    Article  CAS  Google Scholar 

  18. Williams ATR, Winfield SA, Miller JN (1983) Relative fluorescence quantum yields using a computer controlled luminescence spectrometer. Analyst 108:1067–1071

    Article  CAS  Google Scholar 

  19. Liu X, Tang X, Hou Y, Wu Q, Shang G (2015) Fluorescent nanothermometers based on mixed shell carbon nanodots. RSC Adv 5:81713–81722

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Research Foundation of Korea (NRF) funded by Korean government through the Nuclear R&D Project (2015M2A7A1000217) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taek Seung Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Lee, T.S. Thermoresponsive, and reversibly emissive, core–shell nanogel composed of PNIPAM and carbon nanodots. Polym. Bull. 73, 2615–2625 (2016). https://doi.org/10.1007/s00289-016-1702-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1702-7

Keywords

Navigation