Skip to main content
Log in

Effects of crystallization temperature and spherulite size on cracking behavior of semi-crystalline polymers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The cracking behavior of spherulites in melt-crystallized poly (l-lactic acid) and poly [(R)-3-hydroxybutyric acid] was investigated in an isothermal crystallization process. Layered spherulites with dual T c were prepared under gradient cooling conditions. As T c decreased the crack density reduced obviously, while width and depth of the cracks increased. A comparison of the effects of crystallization temperature (T c) and spherulite size on cracking behavior in spherulites was present for the first time. Cracks were found to be more sensitive to T c than spherulite size. Cracks were healed with a thermal treatment and the process was fully reversible. The crack positions were closely depended on the crystalline lamellae alignment set up at T c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bai H, Huang C, Xiu H et al (2014) Enhancing mechanical performance of polylactide by tailoring crystal morphology and lamellae orientation with the aid of nucleating agent. Polymer 55:6924–6934

    Article  CAS  Google Scholar 

  2. Zhang G, Lee PC, Jenkins S et al (2014) The effect of confined spherulite morphology of high-density polyethylene and polypropylene on their gas barrier properties in multilayered film systems. Polymer 55:4521–4530

    Article  CAS  Google Scholar 

  3. Laoutid F, Estrada E, Michell RM et al (2013) The influence of nanosilica on the nucleation, crystallization and tensile properties of PP-PC and PP-PA blends. Polymer 54:3982–3993

    Article  CAS  Google Scholar 

  4. Yao C, Yang G (2009) Cracking in poly(trimethylene terephthalate) spherulites. J Appl Polym Sci 111:1713–1719

    Article  CAS  Google Scholar 

  5. Xu J, Guo BH, Zhou JJ, Li L et al (2005) Observation of banded spherulites in pure poly(l-lactide) and its miscible blends with amorphous polymers. Polymer 46:9176–9185

    Article  CAS  Google Scholar 

  6. Kuboyama K, Ougizawa T (2008) Solvent induced cracking and morphology in banded spherulite poly(trimethylene terephthalate). Polym J 40:1005–1009

    Article  CAS  Google Scholar 

  7. Nurkhamidah S, Woo EM (2011) Cracks and ring bands of poly(3-hydroxybutyrate) on precrystallized poly(l-lactic acid) template. Ind Eng Chem Res 50:4494–4503

    Article  CAS  Google Scholar 

  8. Burns SJ (1996) Stresses and cracks in spherulites from transformation strains. Scripta Mater 35:925–931

    Article  CAS  Google Scholar 

  9. Martinez-Salazar J, Sanchez-Cuesta M, Barham PJ et al (1989) Thermal expansion and spherulite cracking in 3-hydroxybutyrate/3-hydroxyvalerate copolymers. J Mater Sci Lett 8:490–492

    Article  CAS  Google Scholar 

  10. Barham PJ, Keller A (1986) The relationship between microstructure and mode of fracture in polyhydroxybutyrate. J Polym Sci Part B Polym Phys 24:69–77

    Article  CAS  Google Scholar 

  11. Hobbs JK, McMaster TJ, Miles MJ et al (1996) Cracking in spherulites of poly(hydroxybutyrate). Polymer 37:3241–3246

    Article  CAS  Google Scholar 

  12. Nurkhamidah S, Woo E (2012) Correlation of crack patterns and ring bands in spherulites of low molecular weight poly(l-lactic acid). Colloid Polym Sci 290:275–288

    Article  CAS  Google Scholar 

  13. He Y, Fan Z, Wei J et al (2006) Morphology and melt crystallization of poly(l-lactide) obtained by ring opening polymerization of l-lactide with zinc catalyst. Polym Eng Sci 46:1583–1589

    Article  CAS  Google Scholar 

  14. Nurkhamidah S, Woo EM (2011) Effects of crystallinity and molecular weight on crack behavior in crystalline poly(l-lactic acid). J Appl Polym Sci 122:1976–1985

    Article  CAS  Google Scholar 

  15. Fraschini C, Plesu R, Sarasua J-R et al (2005) Cracking in polylactide spherulites. J Polym Sci Part B Polym Phys 43:3308–3315

    Article  CAS  Google Scholar 

  16. Nau T, Teuschl A (2015) Regeneration of the anterior cruciate ligament: current strategies in tissue engineering. World J Orthoped 6:127–136

    Article  Google Scholar 

  17. Hamad K, Kaseem M, Ko YG et al (2014) Biodegradable polymer blends and composites: an overview. Polym Sci Ser A 56:812–829

    Article  CAS  Google Scholar 

  18. Bugnicourt E, Cinelli P, Lazzeri A et al (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8:791–808

    Article  Google Scholar 

  19. Doppalapudi S, Jain A, Khan W et al (2014) Biodegradable polymers—an overview. Polym Adv Technol 25:427–435

    Article  CAS  Google Scholar 

  20. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864

    Article  CAS  Google Scholar 

  21. Jendrossek D, Pfeiffer D (2014) New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3-hydroxybutyrate). Environ Microbiol 16:2357–2373

    Article  CAS  Google Scholar 

  22. Zhang Q, Mochalin VN, Neitzel I et al (2012) Mechanical properties and biomineralization of multifunctional nanodiamond-PLLA composites for bone tissue engineering. Biomaterials 33:5067–5075

    Article  CAS  Google Scholar 

  23. Yang SF, Leong KF, Du ZH et al (2001) The design of scaffolds for use in tissue engineering. Part 1. Traditional factors. Tissue Eng 7:679–689

    Article  CAS  Google Scholar 

  24. Orts WJ, Nobes GAR, Kawada J et al (2008) Poly(hydroxyalkanoates): biorefinery polymers with a whole range of applications. The work of Robert H. Marchessault. Can J Chem Rev Canadienne De Chimie 86:628–640

    Article  CAS  Google Scholar 

  25. Bernardo V, Luz GM, Alves NM et al (2012) Cell behaviour in new poly(l-lactic acid) films with crystallinity gradients. Mater Lett 87:105–108

    Article  CAS  Google Scholar 

  26. Washburn NR, Yamada KM, Simon CG et al (2004) High-throughput investigation of osteoblast response to polymer crystallinity: influence of nanometer-scale roughness on proliferation. Biomaterials 25:1215–1224

    Article  CAS  Google Scholar 

  27. Safari S, van de Ven TGM (2015) Effect of crystallization conditions on the physical properties of a two-layer glassine paper/polyhydroxybutyrate structure. J Mater Sci 50:3686–3696

    Article  CAS  Google Scholar 

  28. Raimo M (2007) “Kinematic” analysis of growth and coalescence of spherulites for predictions on spherulitic morphology and on the crystallization mechanism. Prog Polym Sci 32:597–622

    Article  CAS  Google Scholar 

  29. Stachurski ZH, Macnicol J (1998) The geometry of spherulite boundaries. Polymer 39:5717–5724

    Article  CAS  Google Scholar 

  30. Varga J (1992) Supermolecular structure of isotactic polypropylene. J Mater Sci 27:2557–2579

    Article  CAS  Google Scholar 

  31. Schulze GEW, Wilbert HP (1989) Isothermic spherulitic growth and the shape of grain boundaries and growth fronts. Colloid Polym Sci 267:108–115

    Article  CAS  Google Scholar 

  32. Wang Y, Jiang Z, Fu L et al (2013) Stretching temperature dependency of lamellar thickness in stress-induced localized melting and recrystallized polybutene-1. Macromolecules 46:7874–7879

    Article  CAS  Google Scholar 

  33. Lee SS, Phillips PJ (2007) Melt crystallized polyamide 6.6 and its copolymers, Part I. Melting point-Lamellar thickness relations in the homopolymer. Eur Polym J 43:1933–1951

    Article  CAS  Google Scholar 

  34. Sun Y-S (2006) Temperature-resolved SAXS studies of morphological changes in melt-crystallized poly(hexamethylene terephthalate) and its melting upon heating. Polymer 47:8032–8043

    Article  CAS  Google Scholar 

  35. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  36. Ding G, Liu J (2013) Morphological varieties and kinetic behaviors of poly(3-hydroxybutyrate) (PHB) spherulites crystallized isothermally from thin melt film. Colloid Polym Sci 291:1547–1554

    Article  CAS  Google Scholar 

  37. Hong SG, Hsu HW, Ye MT (2013) Thermal properties and applications of low molecular weight polyhydroxybutyrate. J Therm Anal Calorim 111:1243–1250

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Guangdong Province (No. 2014A030313379), the National Natural Science Foundation of China (No. 81171459) and Research fund for the excellent doctoral dissertation of Guangdong Province (No. sybzzxm201121).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu Lu or Changren Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Lu, L., Li, W. et al. Effects of crystallization temperature and spherulite size on cracking behavior of semi-crystalline polymers. Polym. Bull. 73, 2961–2972 (2016). https://doi.org/10.1007/s00289-016-1634-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1634-2

Keywords

Navigation