Skip to main content
Log in

Preparation of carbon nanotubes/polylactic acid nanocomposites using a non-covalent method

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The polymeric composites with four-armed star polylactic acid (PLA) immobilized on the surface of carbon nanotubes (CNTs) were constructed by a simple ultrasonic process using non-covalent method. The four-armed star polylactic acid was prepared by ring-opening polymerization of lactide using zinc p-tetraaminophenylporphyrin (ZnP) as initiator and stannous octoate as catalyst. Due to the strong π–π interactions between CNTs and zinc porphyrin of star PLA, the CNTs/PLA composites can be easily obtained while the intrinsic graphitic structure of CNTs is retained. The CNTs/PLA nanocomposite was studied via infrared spectrum (IR) and thermogravimetric (TG) analysis. UV–Vis and fluorescence demonstrate that the porphyrin probably strongly anchored on the side walls of the nanotubes. Optical studies further promise the non-covalent interactions. Meanwhile, morphology studies with and scanning electron microscope (SEM) show that CNTs are dispersed well in the polymer. This convenient non-covalent method may be useful for the preparation of CNTs–polymer hybrid without the destruction of the intrinsic graphitic structure of the pristine CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barrau S, Demont P, Peigney A, Laurent C, Lacabanne C (2003) DC and AC conductivity of carbon Nanotubes-polyepoxy composites. Macromolecules 36:5187–5194

    Article  CAS  Google Scholar 

  2. Zhang Y (2015) Carbon nanotubes/polyacrylic acid coating materials prepared by in situ polymerization technique. Polym Bull 72:2519–2526

    Article  CAS  Google Scholar 

  3. Bai JB (2003) Evidence of the reinforcement role of chemical vapor deposition multi-walled carbon nanotubes in a polymer matrix. Carbon 41:1325–1328

    Article  CAS  Google Scholar 

  4. Sun YP, Fu K, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35:1096–1104

    Article  CAS  Google Scholar 

  5. Wang F, Deng K, Zhou L, Zhao J, Ke X, Wen L (2012) Improving the degree of functionalization and solubility of single-walled carbon nanotubes via covalent multiple functionalization. J Inorg Organomet Polym 22:1182–1188

    Article  CAS  Google Scholar 

  6. Tapasztó O, Tapasztó L, MarkóM Kern F, Gadow R, Balázsi C (2011) Dispersion patterns of graphene and carbon nanotubes in ceramic matrix composites. Chem Phys Lett 511:340–343

    Article  Google Scholar 

  7. Zhao H, Zhu Y, Chen C, He L, Zheng J (2012) Synthesis, characterization, and photophysical properties of covalent-linked ferrocene-porphyrin-single-walled carbon nanotube. Carbon 50:4894–4902

    Article  CAS  Google Scholar 

  8. Satake A, Miyajima Y, Kobuke Y (2005) Porphyrin−carbon nanotube composites formed by noncovalent polymer wrapping. Chem Mater 17:716–724

    Article  CAS  Google Scholar 

  9. Li J, Tang T, Zhang X, Li S, Li M (2007) Dissolution, characterization and photofunctionalization of carbon nanotubes. Mater Lett 61:4351–4353

    Article  CAS  Google Scholar 

  10. Kuan CF, Chen CH, Kuan HC, Lin KC (2008) Multi-walled carbon nanotube reinforced poly (L-lactic acid) nanocomposites enhanced by water-crosslinking reaction. J Phys Chem Sol 69:1399–1402

    Article  CAS  Google Scholar 

  11. Lipinska ME, Rebelo SLH, Pereira MFR, Figueiredo JL, Freire C (2013) Photoactive Zn(II)Porphyrin- multi-walled carbon nanotubes nanohybrids through covalent β-linkages. Mater Chem Phys 143:296–304

    Article  CAS  Google Scholar 

  12. Pircheraghi G, Foudazi R, Manas-Zloczower I (2015) Characterization of carbon nanotube dispersion and filler network formation in melted polyol for nanocomposite. Powder Technol 276:222–231

    Article  CAS  Google Scholar 

  13. Chen J, Liu HY, Weimer WA, Halls MD, Waldeck DH, Walker GC (2002) Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. J Am Chem Soc 124:9034–9035

    Article  CAS  Google Scholar 

  14. Guldi DM, Rahman GMA, Zerbetto F, Prato M (2005) Carbon nanotubes in electron donor-acceptor nanocomposites. Acc Chem Res 38:871–878

    Article  CAS  Google Scholar 

  15. Bassiouk M, Basiuk VA, Basiuk EV, Alvarez-Zauco E, Martinez-Herrera M, Rojas-Aguilard A, Puente-Lee I (2013) Noncovalent functionalization of single-walled carbon nanotubes with porphyrins. Appl Surf Sci 275:168–177

    Article  CAS  Google Scholar 

  16. Yang LP, Pan CY (2008) A non-covalent method to functionalize multi-walled carbon nanotubes using six-armed star poly(L-lactic acid) with a triphenylene core. Macromol Chem Phys 209:783–793

    Article  CAS  Google Scholar 

  17. Martone A, Formicola C, Giordano M, Zarrelli M (2010) Reinforcement efficiency of multi-walled carbon nanotube/epoxy nano composites. Compos Sci Technol 70:1154–1160

    Article  CAS  Google Scholar 

  18. Li J, Jiang F, Wan X (2012) Preparation and characterization of novel four armed star polylactic acid with porphyrin core. Acta Polym Sin 11:1314–1318

    Google Scholar 

  19. Li J, Xin H, Li M (2006) Synthesis and mesomorphic behaviour of novel discotic mesotetra(3,4,5-n-trialkoxybenzoylaminophenyl)porphyrins. Liq Cryst 33:913–919

    Article  CAS  Google Scholar 

  20. Gong X, Milic T, Xu C, Batteas JD, Drain CM (2002) Preparation and characterization of porphyrin nanoparticles. J Am Chem Soc 124:14290–14291

    Article  CAS  Google Scholar 

  21. Wang A, Fang Y, Long L, Song Y, Yu W, Zhao W, Cifuentes MP, Humphrey MG, Zhang C (2013) Facile Synthesis and enhanced nonlinear optical properties of porphyrin-functionalized multi-walled carbon nanotubes. Chem Eur J 19:14159–14170

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21404066) and Qingdao Agricultural University Research Foundation (631222).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianzhong Li or Hu Shan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Song, Z., Gao, L. et al. Preparation of carbon nanotubes/polylactic acid nanocomposites using a non-covalent method. Polym. Bull. 73, 2121–2128 (2016). https://doi.org/10.1007/s00289-015-1597-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1597-8

Keywords

Navigation