Skip to main content
Log in

An investigation on the Young’s modulus and impact strength of nanocomposites based on polypropylene/linear low-density polyethylene/titan dioxide (PP/LLDPE/TiO2) using response surface methodology

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, an attempt was made to optimize Young’s modulus and impact strength of nanocomposites based on polypropylene/linear low-density polyethylene/nanotitanium dioxide (PP/LLDPE/TiO2) using the experimental design. Experiments were designed according to Box–Behnken response surface methodology to screen out significant factors from linear low-density polyethylene (LLDPE), styrene–ethylene–butylene–styrene (SEBS as a compatibilizer), and titanium dioxide (TiO2) nanoparticles. The thermal behavior of the nanocomposites was also studied by means of differential scanning calorimetry (DSC). From the statistical analysis, the most important parameter affecting Young’s modulus and impact strength was obtained as LLDPE of PP/LLDPE/TiO2 nanocomposites, which was followed by TiO2 and SEBS. Finally, based on the desirability function, the optimized factors for maximum Young’s modulus and impact properties were found as LLDPE, 60 wt%; TiO2, 2.6 wt%; and SEBS, 2.3 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zapata PA, Rabagliati FM, Lieberwirth I, Catalina F, Corrales T (2014) Study of the photodegradation of nanocomposites containing TiO2 nanoparticles dispersed in polyethylene and in poly (ethylene-cooctadecene). Polym Degrad Stabil 109:106–114

    Article  CAS  Google Scholar 

  2. Chen JH, Zhong JC, Cai YH, Su WB, Yang YB (2007) Morphology and thermal properties in the binary blends of poly (propylene-co-ethylene) copolymer and isotactic polypropylene with polyethylene. Polymer 48:2946–2957

    Article  CAS  Google Scholar 

  3. Owpradit W, Jongsomjit B (2008) A comparative study on synthesis of LLDPE/TiO2 nanocomposites using different TiO2 by in situ polymerization with zirconocene/dMMAO catalyst. Mater Chem Phys 112:954–961

    Article  CAS  Google Scholar 

  4. Chaichana E, Jongsomjit B, Praserthdam P (2007) Effect of nano-SiO2 particle size on the formation of LLDPE/SiO2 nanocomposite synthesized via the in situ polymerization with metallocene catalyst. Chem Eng Sci 62:899–905

    Article  CAS  Google Scholar 

  5. Zapata PA, Palza H, Cruz LS, Lieberwirth I, Catalina F, Corrales T, Rabagliati M (2013) Polyethylene and poly (ethylene-co-1-octadecene) composites with TiO2 based nanoparticles by metallocenic “in situ” polymerization. Polymer 54:2690–2698

    Article  CAS  Google Scholar 

  6. Palza H, Reznik B, Kappes M, Hennrich F, Naue IFC, Wilhelm M (2010) Characterization of melt flow instabilities in polyethylene/carbon nanotube composites. Polymer 51:3753–3761

    Article  CAS  Google Scholar 

  7. Palza H, Vergara R, Zapata PA (2011) Composites of polypropylene melt blended with synthesized silica nanoparticles. Compos Sci Technol 71:535–540

    Article  CAS  Google Scholar 

  8. Tong Y, Li Y, Xie F, Ding M (2000) Preparation and characteristics of polyimide–TiO2 nanocomposite film. Polym Int 49:1543–1547

    Article  CAS  Google Scholar 

  9. Giang V, Thai H, Huynh D, Trung H, Lam DT, Tuan MV (2013) Effect of titanium dioxide on the properties of polyethylene/TiO2 nanocomposites. Compos B Eng 45:1192–1198

    Article  Google Scholar 

  10. Norio N, Toyoharu H (2008) Preparation of TiO2 nanoparticles surface-modified by both carboxylic acid and amine: dispersibility and stabilization in organic solvents. Colloids Surf A 317:543–550

    Article  Google Scholar 

  11. Pascual DAM, Marián A, Fatou G, Ania F, Flores A (2015) Nanoindentation in polymer nanocomposite. Prog Mater Sci 67:1–94

    Article  Google Scholar 

  12. Garcia M, Vilet GV, Jain S (2004) Polypropylene/SiO2 nanocomposites with improved mechanical properties. Rev Adv Mater Sci 6:169–175

    CAS  Google Scholar 

  13. Selvin TP, Kuruvilla J (2004) Mechanical properties of titanium dioxide filled polystyrene microcomposites. Mater Lett 58:281–289

    Article  CAS  Google Scholar 

  14. Wacharawichananat S, Thongyai S, Tipsri T (2009) Effect of mixing conditions and particle sizes of titanium dioxide on mechanical and morphological properties of polypropylene/titanium dioxide composites. Iran Polym J 18:607–616

    Google Scholar 

  15. Altan M, Yildirim H (2010) Mechanical and morphological properties of polypropylene and high density polyethylene matrix composites reinforced with surface modified nano sized TiO2 particles. World Acad Sci Eng Technol 70:289–294

    Google Scholar 

  16. Premphet K, Horanont P (2000) Phase structure of ternary polypropylene/elastomer/filler composites effect of elastomer polarity. Polymer 41:9283–9290

    Article  CAS  Google Scholar 

  17. AbuGhalia M, Hassan A, Yussuf A (2011) Mechanical and thermal properties of calcium carbonate filled PP/LLDPE composite. J Appl Polym Sci 121:2413–2421

    Article  CAS  Google Scholar 

  18. Gang L, Feng LY, Yuan YF, Cheng ZL, Xing ZZ, Ji XQ (2005) Effect of nanoscale SiO2 and TiO2 as the fillers on the mechanical properties and aging behavior of linear low density polyethylene/low density polyethylene blends. J Polym Env 13:339–348

    Article  Google Scholar 

  19. Ashenai Ghasemi F, Payganeh GH, Rahmani M (2013) The effect of stearic acid surface-modified calcium carbonate nanoparticles and PP-g-MA on the mechanical properties of PP/CaCO3/PP-g-MA nanocomposites. Modares Mech Eng 13:139–152 (In Persian)

    Google Scholar 

  20. Altan M, Yildirim H (2012) Mechanical and antibacterial properties of injection molded polypropylene/TiO2 nano-composites: effects of surface modification. J Mater Sci Technol 28:686–692

    Article  CAS  Google Scholar 

  21. Guo H, Li X (2012) Preparation and properties of transparent SEBS/titania nanocomposite films via functionalization of SEBS and sol–gel process. Polym Polym Compos 20:155–160

    CAS  Google Scholar 

  22. Xue B, Li F, Xing Y, Sun M, Liu D, Jiang Y (2001) Preparation of Cu/OMMT/LLDPE nanocomposites and synergistic effect study of two different nano materials in polymer matrix. Polym Bull 67:1463–1481

    Article  Google Scholar 

  23. Montgomery DC (2001) Design and analysis of experiments. John Wiley, New York

    Google Scholar 

  24. Box GEP, Wilson KB (1981) on the experimental attainment of optimum conditions. J Roy Statist Soc Ser B Metho 13:1–45

    Google Scholar 

  25. Kusmono ZA, Ishak MWS, Chow T, Takeichi Rochmadi (2008) Influence of SEBS-g-MA on morphology, mechanical, and thermal properties of PA6/PP/organoclay nanocomposites. Eur Polym J 44:1023–1039

    Article  CAS  Google Scholar 

  26. Knor N, Walter R, Haupert F (2011) Mechanical and thermal properties of nano-titanium dioxide reinforced polyetheretherketone produced by optimized twin screw extrusion. J Thermoplast Compos Mater 24:185–205

    Article  Google Scholar 

  27. Naffakh M, Pascual AMD, Marco C, Ellis GJ, Fatou MAG (2013) Opportunities and challenges in the use of inorganic fullerene-like nanoparticles to produce advanced polymer nanocomposites. Prog Polym Sci 38:1163–1231

    Article  CAS  Google Scholar 

  28. Jeong IJ, Kim KJ (2005) D-STEM: a modified step method with desirability function concept. Comput Oper Res 32:3175–3190

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faramarz Ashenai Ghasemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashenai Ghasemi, F., Daneshpayeh, S., Ghasemi, I. et al. An investigation on the Young’s modulus and impact strength of nanocomposites based on polypropylene/linear low-density polyethylene/titan dioxide (PP/LLDPE/TiO2) using response surface methodology. Polym. Bull. 73, 1741–1760 (2016). https://doi.org/10.1007/s00289-015-1574-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1574-2

Keywords

Navigation