Skip to main content
Log in

Crosslinker effects on swelling and gel properties of pH- and temperature-responsive poly (NIPAM/IA/AM) hydrogels

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A novel pH- and temperature-responsive poly (N-isopropyl acrylamide/itaconic acid/acrylamide)(NIPAM/IA/AM) hydrogel was synthesized by inverse microemulsion polymerization and crosslinker effects on its swelling and gel properties were investigated. Water absorbency and salt solution absorbency increased with crosslinker amount increased to 0.2 wt%, and then decreased, while pH-sensitivity decreased and gel strength, temperature-and shear- resistance increased with increased crosslinker amount. The average particle size of the NIPAM/IA/AM hydrogels synthesized at crosslinker amount of 0.2 and 0.4 wt%, increased from 0.45 and 0.38 μm to 11.86 and 9.88 μm, respectively, with swelling time from 1 to 15 h. The NIPAM/IA/AM hydrogel demonstrated shear-thinning behavior and increased gel strength from 25 to 35 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kiler J, Scranton AB, Peppas NA (1990) Self-associating networks of poly (methacrylic acid-g-ethylene glycol). Macromolecules 23:4944–4949

    Article  Google Scholar 

  2. Chiu HC, LinYF Hung SH (2002) Equilibrium swelling of copolymerized acrylic acid-methacrylated dextran networks: effects of pH and neutral salt. Macromolecules 35:5235–5242

    Article  CAS  Google Scholar 

  3. Kokufata E, Zhang YQ, Tanaka T (1991) Saccharide-sensitive phase-transition of a lectin-loaded gel. Nature 351:302–304

    Article  CAS  Google Scholar 

  4. Mamada A, Tanaka T, Kungwatchakun D, Irie M (1990) Photoinduced phase transition of gels. Macromolecules 23:1517–1519

    Article  CAS  Google Scholar 

  5. Xulu PM, Filipcsei G, Zrinyi M (2000) Preparation and Responsive Properties of magnetically soft poly(N-isopropylacrylamide) gels. Macromolecules 33:1716–1719

    Article  CAS  Google Scholar 

  6. Shibayama M, Tanaka T, Han C (1992) Small-angle neutron-scattering study on weakly charged temperature sensitive polymer gel. J Chem Phys 97:6842–6854

    Article  CAS  Google Scholar 

  7. Park TG, Hoffman AS (1993) Sodium chloride-induced phase transition in nonionic poly(N-isopropylacrylamide) gel. Macromolecules 26:5045–5048

    Article  CAS  Google Scholar 

  8. Kang X, Cheng Z, Yang D, Ma P, Shang M, Peng C, Dai Y, Lin J (2012) Design and synthesis of multifunctional drug carriers based on luminescent rattle-type mesoporous silica microspheres with a thermosensitive hydrogel as a controlled switch. Adv Funct Mater 22:1470–1481

    Article  CAS  Google Scholar 

  9. Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical applications. Polymers 3:1215–1242

    Article  CAS  Google Scholar 

  10. Jeong B, Bae YH, Lee DS, Kim SW (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature 388:860–862

    Article  CAS  Google Scholar 

  11. Dong L, Jiang H (2007) Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter 3:1223–1230

    Article  CAS  Google Scholar 

  12. Akiyama H, Tamaoki N (2007) Synthesis and photoinduced phase transitions of poly(N-isopropylacrylamide) derivative functionalized with terminal azobenzene units. Macromolecules 40:5129–5132

    Article  CAS  Google Scholar 

  13. Hoare T, Pelton R (2007) Engineering glucose swelling responses in poly (N-isopropylacrylamide)-based microgels. Macromolecules 40:670–678

    Article  CAS  Google Scholar 

  14. Shiino D, Murata Y, Kataoka K, Koyama Y, Yokoyama M, Okano T, Sakurai Y (1994) Preparation and characterization of a glucose-responsive insulin-releasing polymer device. Biomaterials 15:121–128

    Article  CAS  Google Scholar 

  15. Wever DAZ, Picchioni F, Broekhuis AA (2011) Polymers for enhanced oil recovery: a paradigm for structure–property relationship in aqueous solution. Prog Polym Sci 36:1558–1628

    Article  CAS  Google Scholar 

  16. Serrano-Medina A, Cornejo-Bravo JM, Licea-Claveríe A (2012) Synthesis of pH and temperature sensitive, core–shell nano/microgels, by one pot, soap-free emulsion polymerization. J Colloid Interf Sci 369:82–90

    Article  CAS  Google Scholar 

  17. Durand A, Hourdet D (1999) Synthesis and thermoassociative properties in aqueous solution of graft copolymers containing poly(N-isopropylacrylamide) side chains. Polymer 40:4941–4951

    Article  CAS  Google Scholar 

  18. Durand A, Hourdet D (2000) Thermoassociative graft copolymers based on poly(N-isopropylacrylamide): relation between the chemical structure and the rheological properties. Macromol Chem Phys 201:858–868

    Article  CAS  Google Scholar 

  19. Zhao CW, Zhuang XL, He P, Xiao CS, He CL, Sun JR, Chen XS, Jing XB (2009) Synthesis of biodegradable thermo- and pH-responsive hydrogels for controlled drug release. Polymer 50:4308–4316

    Article  CAS  Google Scholar 

  20. Ju HK, Kim SY, Kim SJ, Lee YM (2002) pH/temperature-responsive semi-IPN hydrogels composed of alginate and poly(N-isopropylacrylamide). J Appl Polym Sci 83:1128–1139

    Article  CAS  Google Scholar 

  21. Zhang GQ, Zha LS, Zhou MH, Ma JM, Liang BR (2005) Preparation and characterization of pH- and temperature- responsive semi-interpenetrating polymer network hydrogels based on linear sodium alginate and cross-linked poly(N-isopropylacrylamide). J Appl Polym Sci 97:1931–1940

    Article  CAS  Google Scholar 

  22. Zhang J, Peppas N (2000) Synthesis and characterization of pH- and temperature- sensitive poly(methacrylic acid)/poly(Nisopropylacrylamide) interpenetrating polymeric networks. Macromolecules 33:102–107

    Article  CAS  Google Scholar 

  23. Zhao CW, He P, Xiao CS, Gao XY, Zhuang XL, Chen XS (2012) Photo- cross- linked biodegradable thermo- and pH-responsive hydrogels for controlled drug release. J Appl Polym Sci 123:2923–2932

    Article  CAS  Google Scholar 

  24. Wan T, Xu M, Chen LY, Wu DQ, Cheng WZ, Li RX, Zou CZ (2014) Synthesis and properties of a dual responsive hydrogel by inverse microemulsion polymerization. J Chem Sci 126(6):1623–1627

    Article  CAS  Google Scholar 

  25. Wan T, Huang RQ, Zhao QH, Xiong L, Luo L, Zhang HB, Cai GJ (2014) Swelling behaviors and gel strength stuides of wheat straw-composite superabsorbent. J Compos Mater 48:2341–2348

    Article  Google Scholar 

  26. Wan T, Xiong L, Huang RQ, Zhao QH, Tan XM, Qin LL, Hu JY (2014) Structure and properties of corn stalk-composite superabsorbent. Polym Bull 71:371–383

    Article  CAS  Google Scholar 

  27. Wan T, Huang RQ, Zhao QH, Xiong L, Luo L, Tan XM, Cai GJ (2013) Synthesis and swelling properties of corn stalk-composite superabsorbent. J Appl Polym Sci 130:698–703

    Article  CAS  Google Scholar 

  28. Wan T, Huang RQ, Zhao QH, Xiong L, Qin LL, Tan XM, Cai GJ (2013) Synthesis of wheat straw-composite superabsorbent. J Appl Polym Sci 130:3404–3410

    Article  CAS  Google Scholar 

  29. Wan T, Yao J, Sun ZS, Wang L, Wang J (2011) Solution and drilling fluid properties of water soluble AM-AA-SSS copolymers by inverse microemulsion. J Petrol Sci Eng 78:334–337

    Article  CAS  Google Scholar 

  30. Wan T, Zang TS, Wang YC, Zhang R, Sun XC (2010) Preparation of water soluble Am-AA-SSS copolymers by inverse microemulsion polymerization. Polym Bull 65:565–576

    Article  CAS  Google Scholar 

  31. Wan T, Wu C, Ma XL, Yao J, Lu K (2009) Microstructure and properties of silane monomer- modified styrene-acrylate nanocoatings. Polym Bull 62:801–811

    Article  CAS  Google Scholar 

  32. Wan T, Yao J, Ma XL (2008) Preparation of poly (AA-AM) water superabsorbent by inverse microemulsion polymerization. J Appl Polym Sci 110:3859–3864

    Article  CAS  Google Scholar 

  33. Wan T, Wang L, Yao J, Ma XL, Yin QS, Zang TS (2008) Saline solution absorbency and structure study of poly (AA-AM) water superabsorbent by inverse microemulsion polymerization. Polym Bull 60:431–440

    Article  CAS  Google Scholar 

  34. Pourjavadi A, Amini-Fazl MS (2007) Optimized synthesis of carrageenang- graft- poly (sodium acrylate) super-absorbent hydrogel using the Taguchi method and investigation of its metal ion absorption. Polym Int 56:283–289

    Article  CAS  Google Scholar 

  35. Ma JH, Xu YJ, Zhang QS, Zha LS, Liang BR (2007) Preparation and characterization of pH- and temperature-responsive semi-IPN hydrogels of carboxymethyl chitosan with poly (N-isopropyl acrylamide) crosslinked by clay. Colloid Polym Sci 285:479–484

    Article  CAS  Google Scholar 

  36. Murthy PSK, Mohan YM, Sreeramulu J, Raju KM (2006) Semi-IPNs of starch and poly(acrylamide-co-sodium methacrylate): preparation, swelling and diffusion characteristics evaluation React. Funct Polym 66:1482–1493

    Article  CAS  Google Scholar 

  37. Zhao CW, Gao XY, He P, Xiao CS, Zhuang XL, Chen XS (2011) Facile synthesis of thermo- and pH- responsive biodegradable microgels. Colloid Polym Sci 289:447–451

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of PetroChina Innovation Foundation, China (Grant No. 2012D-5006-0212), Sichuan Provincial Science and Technology Pillar Program, China (Grant No. 2013GZ0149), Opening fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, China (Grant No. SKLGP2012K004) and the Sichuan Youth Science and Technology Innovation Research Team Funding Scheme, China (Grant No. 2013TD0005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Wan or Qihua Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, T., Xiong, J., Zhao, Q. et al. Crosslinker effects on swelling and gel properties of pH- and temperature-responsive poly (NIPAM/IA/AM) hydrogels. Polym. Bull. 73, 1447–1458 (2016). https://doi.org/10.1007/s00289-015-1557-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1557-3

Keywords

Navigation