Skip to main content
Log in

Preparation and characterization of cellulose p-phenylbenzoate by two-step synthesis from microcrystalline and kraft cellulose

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Synthesis and structural characterizations of p-bromobenzoate and p-phenylbenzoate of cellulose were carried out. Cellulose derivatives were synthesized by esterification and Suzuki–Miyaura coupling. p-Bromobenzoylation produced 75 % yield by treating a mixture of microcrystalline or kraft cellulose, and p-bromobenzoyl chloride at 80 °C in 1-N-butyl-3-methylimidazolium chloride (Bmim)[Cl] for 2 h. The effects of reaction time, temperature and molar ratio of p-bromobenzoyl chloride/anhydroglucose unit on degree of substitution (DS) value of cellulose p-bromobenzoate were investigated. Cellulose p-bromobenzoate was then coupled with phenyl boronic acid with 87 % yield using standard Suzuki–Miyaura coupling conditions in dimethyl sulfoxide (DMSO). The structure as well as the properties of the obtained product was characterized using different analytical tools such as Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) and thermogravimetric analysis (TGA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Fig. 4

Similar content being viewed by others

References

  1. Heinze T (1998) New ionic polymer by cellulose functionalization. Feature article. Macromol Chem Phys 199:2341–2364. doi:10.1002/(SICI)1521-3935(19981101)199:11<2341:AID-MACP2341>3.0.CO;2-j

    Article  CAS  Google Scholar 

  2. Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advance in cellulose ester performance and application. Prog Polym Sci 26:1605–1688. doi:10.1016/S0079-6700(01)00027-2

    Article  CAS  Google Scholar 

  3. Fulkerson B, Mench WJ (1958) Preparation of nitrogen containing cellulose derivatives. United states patent office 2861068 A. Serial No 619,681

  4. Fulkerson B, Mensch WJ (1963) Process for preparing nitrogen containing cellulose derivatives. US Patent 3089870 A

  5. Hiatt GD, Mench JW, Fulkerson B (1964) Amination of cellulose acetate chloroacetate. Preparation and properties of cellulose acetate N, N-diethylamino acetate. Ind Eng Chem Prod Res Dev 3:295–299. doi:10.1021/i360012a009

    Article  CAS  Google Scholar 

  6. Nadeau GF, Thompson CB (1957) Removable layers for film. United States. Patent office 2801191. Serial No 545,644

  7. Okamoto Y, Yashima E (1998) Polysaccharide derivatives for chromatographic separation of enantiomers. Angew Chem Int Ed 37:1020–1043. doi:10.1002/(SICI)1521-3773

    Article  Google Scholar 

  8. Yashima E (2001) Polysaccharide-based chiral stationary phases for high-performance liquid chromatographic enantioseparation. Chromatogr A 906:105–125. doi:10.1016/S0021-9673(00)00501-X

    Article  CAS  Google Scholar 

  9. Tomoyuki I, Kazuma K, Katsuhiro M, Shigeyoshi K (2014) Synthesis of polysaccharide derivatives bearing bromobenzoate pendants for use as chiral auxiliaries. React Funct Polym 82:52–57

    Article  Google Scholar 

  10. McCormick CL, Callais PA, Huchinson BH (1985) Solution studies of cellulose in lithium chloride and N, N-dimethylacetamide. Macromolecules 18:2394–2401

    Article  CAS  Google Scholar 

  11. Turbak AF, El-Kafrawy A, Snyder FW, Auerbach AB (1981) Solvent system for cellulose. US Patent 4,302,252

  12. McCormick CL, Callais PA, Hutchinson BH (1985) Solution studies of cellulose in lithium chloride and N,N-dimethylacetamide. Macromolecules 18(12):2394–2401

    Article  CAS  Google Scholar 

  13. Okamoto Y, Kawashima M, Yamamoto K, Hatada K (1984) Useful chiral packing materials for high-performance liquid chromatographic resolution. Cellulose triacetate and tribenzoate coated on macroporous silical gel. Chem Lett 149:739–742. doi:10.1246/cl.1984.739

    Article  Google Scholar 

  14. Okamoto Y, Aburatani R, Hatada K (1987) Chromatographic chiral resolution XIV Cellulose tribenzoate derivatives as chiral stationary phases for high-performance liquid chromatography. Chromatogr A 389:95–102. doi:10.1016/S0021-9673(01)94414-0

    Article  CAS  Google Scholar 

  15. Jinming Z, Jin W, Yan C, Shengmei S, Jun Z, Jiasong H (2009) Synthesis of cellulose benzoates under homogeneous conditions in an ionic liquid. Cellulose 16:299–308. doi:10.1007/s10570-008-9260-2

    Article  Google Scholar 

  16. Wu J, Zhang J, Zhang H, He Jiasong, Ren Q, Guo M (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 5:266–268

    Article  CAS  Google Scholar 

  17. Barthel S, Heinze T (2006) Acylation and carbanilation of cellulose in ionic liquid. Green Chem 8:301–306

    Article  CAS  Google Scholar 

  18. Yan C, Zhang J, Jiasong H, Huiquan L, Zhang Y (2010) Homogeneous acetylation of cellulose at relatively high concentrations in an ionic liquid. Chin J Chem Eng 18:515–522

    Article  Google Scholar 

  19. Earle MJ, Seddon KR (2002) Ionic liquids: green solvents for the future. In: Abraham M, Moens L (eds) Clean solvents: alternative media for chemical reactions and processing. ACS symposium series 819. American Chemical Society, Washington, pp 10–25

    Google Scholar 

  20. Gordon CM (2001) New developments in catalysis using ionic liquids. Appl Catal A General 222:101–117

    Article  CAS  Google Scholar 

  21. Rogers RD, Seddon KR (2002) Ionic liquids: industrial applications for green chemistry. Am Chem Soc, Washington DC

    Book  Google Scholar 

  22. Wasserscheid P, Welton T (2003) Ionic liquids in synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  23. Qingwei Du, Yiqun L (2011) Air-stable, recyclable, and time-efficient diphenylphosphinite cellulose supported palladium nanoparticles as a catalyst for Suzuki-Miyaura reactions. Beilstein J Org Chem 7:378–385. doi:10.3762/bjoc.7.48

    Article  Google Scholar 

  24. Miyaura Norio, Suzuki Akira (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev 95:2457–2483

    Article  CAS  Google Scholar 

  25. Sun JX, Xu F, Geng ZC, Sun XF, Sun RC (2005) Comparative study of cellulose isolated by totally chlorine-free method from wood and cereal straw. J Appl Polym Sci 97:322–335. doi:10.1002/app.21728

    Article  CAS  Google Scholar 

  26. Chen XM, Zou HF, Ni JY, Feng S (2003) Synthesis and characteristics of composite chiral stationary phases based on cellulose derivative. J Sep Sci 26:29–36. doi:10.1002/jssc.200390010

    Article  Google Scholar 

  27. Acemoglu M, Kusters E, Baumann J, Hernandez I, Mak CP (1998) Synthesis of regioselectively substituted cellulose derivatives and applications in chiral chromatography. Chirality 10:294–306. doi:10.1002/(SICI)1520

  28. Goodlett VW, Dougherty JT, Patton HW (1971) Characterization of cellulose acetates by nuclear magnetic resonance. J Polym Sci Part Polym Chem 9:155–161. doi:10.1002/pol.1971.150090114

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed El Moussaouiti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Hamdaoui, L., El Moussaouiti, M. & Gmouh, S. Preparation and characterization of cellulose p-phenylbenzoate by two-step synthesis from microcrystalline and kraft cellulose. Polym. Bull. 72, 3031–3042 (2015). https://doi.org/10.1007/s00289-015-1451-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1451-z

Keywords

Navigation