Skip to main content
Log in

Poly(ethylene oxide)/graphene oxide nanocomposites: structure, properties and shape memory behavior

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly(ethylene oxide) (PEO)/graphene oxide (GO) nanocomposites with GO contents of 1, 3, 5 and 7 wt% were prepared by solution mixing followed by film casting. Field-emission scanning electron microscopy observations showed that the GO nanosheets are dispersed uniformly in the PEO matrix. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis of the nanocomposites revealed that there are hydrogen-bonded interactions between surface carboxylic acid on the GO sheets and ether group of the PEO. Differential scanning calorimetry (DSC), tensile testing, and dynamic mechanical analysis (DMA) showed that, with increasing GO content in the nanocomposites, the melting temperature and degree of crystallinity decreased while glass transition temperature, tensile modulus, strength and elongation-at-break concurrently increased. DMA results also demonstrated the presence of a rubbery plateau above the melting temperature of the PEO/GO nanocomposites, and the moduli at the plateau region increased with increasing GO content in the nanocomposites, implying that the PEO/GO nanocomposites formed a physically crosslinked structure. PEO/GO nanocomposites with GO contents higher than 5 wt% exhibited excellent thermally and infrared-triggered shape memory behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  2. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  3. Compton OC, Nguyen SBT (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–723

    Article  CAS  Google Scholar 

  4. Liang J, Xu Y, Huang Y, Zhang L, Wang Y, Ma Y, Li F, Guo T, Chen Y (2009) Infrared-triggered actuators from graphene-based nanocomposites. J Phys Chem 113:9921–9927

    CAS  Google Scholar 

  5. Yousefi N, Gudarzi MM, Zheng Q, Lin X, Shen X, Jia J, Sharif F, Kim JK (2013) Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: mechanical properties and moisture permeability. Composites Part A Appl Sci Manfact 49:42–50

    Article  CAS  Google Scholar 

  6. Zhang J, Qiu Z (2011) Morphology, crystallization behavior, and dynamic mechanical properties of biodegradable poly(ε-caprolactone)/thermally reduced graphene nanocomposites. Ind Eng Chem Res 50:13885–13891

    Article  CAS  Google Scholar 

  7. Kuila T, Khanra P, Mishra AK, Kim NH, Lee JH (2012) Functionalized-graphene/ethylene vinyl acetate copolymer composites for improved mechanical and thermal properties. Polym Testing 31:282–289

    Article  CAS  Google Scholar 

  8. Choi BG, Huh YS, Park YC, Jung DH, Hong WH, Park HS (2012) Enhanced transport properties in polymer electrolyte composite membranes with graphene oxide sheets. Carbon 50:5395–5402

    Article  CAS  Google Scholar 

  9. Yang X, Tu Y, Li L, Shang S, Tao XM (2010) Well-dispersed chitosan/graphene oxide nanocomposites. Appl Mater Interf 2:1707–1713

    Article  CAS  Google Scholar 

  10. Pan Y, Wu T, Bao H, Li L (2011) Green fabrication of chitosan films reinforced with parallel aligned graphene oxide. Carbohy Polym 83:1908–1915

    Article  CAS  Google Scholar 

  11. Wang Y, Shi Z, Yu J, Chen L, Zhu J, Hu Z (2012) Tailoring the characteristics of graphite oxide nanosheets for the production of high-performance poly(vinyl alcohol) composites. Carbon 50:5525–5536

    Article  CAS  Google Scholar 

  12. Qi X, Yao X, Deng S, Zhou T, Fu Q (2014) Water-induced shape memory effect of graphene oxide reinforced polyvinyl alcohol nanocomposites. J Mater Chem A 2:2240–2249

    Article  CAS  Google Scholar 

  13. Morimune S, Nishino T, Goto T (2012) Poly(vinyl alcohol)/graphene oxide nanocomposites prepared by a simple eco-process. Polym J 44:1056–1063

    Article  CAS  Google Scholar 

  14. Zhao X, Zhang Q, Chen D (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363

    Article  CAS  Google Scholar 

  15. Satti A, Larpent P, Gun’ko Y (2010) Improvement of mechanical properties of graphene oxide/poly(allylamine) composites by chemical crosslinking. Carbon 48:3376–3381

    Article  CAS  Google Scholar 

  16. Liu R, Liang S, Tang XZ, Yan D, Li X, Yu ZZ (2012) Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J Mater Chem 22:14160–14167

    Article  CAS  Google Scholar 

  17. Alcantar NA, Aydil ES, Israelachvili JN (2000) Polyethylene glycol-coated biocompatible surfaces. J Biomed Mater Res 51:343–351

    Article  CAS  Google Scholar 

  18. Yang XQ, Hanson L, McBreen J, Okamoto Y (1995) Development of a new plasticizer for poly(ethylene oxide)-based polymer electrolyte and the investigation of their ion-pair dissociation effect. J Power Sour 54:198–204

    Article  CAS  Google Scholar 

  19. Mishra R, Rao KJ (1998) Electrical conductivity studies of poly(ethyleneoxide)-poly(vinylalcohol) blends. Solid State Ionics 106:113–127

    Article  CAS  Google Scholar 

  20. Ratna D, Divekar S, Samui AB, Chakraborty BC, Banthia AK (2006) Poly(ethylene oxide)/clay nanocomposite: thermomechanical properties and morphology. Polymer 47:4068–4074

    Article  CAS  Google Scholar 

  21. Abraham TN, Siengchin S, Ratna D, Karger-Kocsis J (2010) Effect of modified layered silicates on the confined crystalline morphology and thermomechanical properties of poly(ethylene oxide) nanocomposites. J Appl Polym Sci 118:1297–1305

    CAS  Google Scholar 

  22. Burgaz E (2011) Poly(ethylene-oxide)/clay/silica nanocomposites: morphology and thermomechanical properties. Polymer 52:5118–5126

    Article  CAS  Google Scholar 

  23. Azizi Samir MAS, Alloin F, Sanchez JY, Dufresne A (2004) Cellulose nanocrystals reinforced poly(oxythyene). Polymer 45:4149–4157

    Article  CAS  Google Scholar 

  24. Azizi Samir MAS, Chazeau L, Alloin F, Cavaille JY, Dufresne A, Sanchez JY (2005) POE-based nanocomposite polymer electrolytes reinforced with cellulose whiskers. Electrochmica Acta 50:3897–3903

    Article  CAS  Google Scholar 

  25. Narh KA, Jallo L, Rhee KY (2008) The effect of carbon nanotube agglomeration on the thermal and mechanical properties of polyethylene oxide. Polym Comp 29:809–817

    Article  Google Scholar 

  26. Abraham TN, Ratna D, Siengchin S, Karger-Kocsis J (2008) Rheological and thermal properties of poly(ethylene oxide)/multiwalled carbon nanotube composites. J Appl Polym Sci 110:2094–2101

    Article  CAS  Google Scholar 

  27. Zhang Q, Archer LA (2002) Poly(ethylene oxide)/silica nanocomposites: structure and rheology. Langmuir 18:10435–10442

    Article  CAS  Google Scholar 

  28. Wang M, Luo X, Ma D (1998) Dynamic mechanical behavior in the ethylene terephthalate-ethylene oxide copolymer with long soft segment as a shape memory material. Eur Polym J 34:1–5

    Article  CAS  Google Scholar 

  29. Huang CL, Jiao L, Zhang JJ, Zeng JB, Yang KK, Wang YZ (2012) Poly(butylene succinate)-poly(ethylene glycol) multiblock copolymer: synthesis, structure, properties and shape memory performance. Polym Chem 3:800–808

    Article  CAS  Google Scholar 

  30. Ratna D, Karger-Kocsis J (2011) Shape memory polymer system of semi-interpenetrating network structure composed of crosslinked poly(methyl methacrylate) and poly(ethylene oxide). Polymer 52:1063–1070

    Article  CAS  Google Scholar 

  31. Zhang H, Xia H, Zhao Y (2012) Optically triggered and spatially controllable shape-memory polymer–gold nanoparticle composite materials. J Mater Chem 22:845–849

    Article  CAS  Google Scholar 

  32. Kim JT, Kim BK, Kim EY, Park HC, Jeong HM (2014) Synthesis and shape memory performance of polyurethane/graphene nanocomposites. React Funct Polym 74:16–21

    Article  CAS  Google Scholar 

  33. Lu H, Liang F, Gou J, Leng J, Du S (2014) Synergistic effect of Ag nanoparticle decorated graphene oxide and carbon fiber on electrical actuation of polymeric shape memory nanocomposites. Smart Mater Struct 23:085034

    Article  Google Scholar 

  34. Lu H, Yao Y, Huang WM, Hui D (2014) Noncovalently functionalized carbon fiber by grafted self-assembled graphene oxide and the synergistic effect on polymeric shape memory nanocomposites. Compos B 67:290–295

    Article  CAS  Google Scholar 

  35. Schmidt AM (2006) Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol Rapid Commun 27:1168–1172

    Article  CAS  Google Scholar 

  36. Stankovich S, Piner RD, Nguyen ST, Ruoff RS (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44:3342–3347

    Article  CAS  Google Scholar 

  37. Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158

    Article  CAS  Google Scholar 

  38. Fuller CS, MacRae RJ, Walther M, Cameron RE (2001) Interactions in poly(ethylene oxide)-hydroxypropyl methylcellulose blends. Polymer 42:9583–9592

    Article  CAS  Google Scholar 

  39. Zhou S, Zheng X, Yu X, Wang J, Weng J, Li X et al (2007) Hydrogen bonding interaction of poly(d, l-lactide)/hydroxyapatite nanocomposites. Chem Mater 19:247–253

    Article  CAS  Google Scholar 

  40. Vidotto G, Levy DL, Kovacs AJ (1969) Cristallisation et fusion des polymères autoensemencés. Kolloid Z Z Polym 230:289–305

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant (No. 405-111-004) funded by Ministry of Environment, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Wook Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, YW., Lee, KS., Lee, YW. et al. Poly(ethylene oxide)/graphene oxide nanocomposites: structure, properties and shape memory behavior. Polym. Bull. 72, 1937–1948 (2015). https://doi.org/10.1007/s00289-015-1381-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1381-9

Keywords

Navigation