Skip to main content
Log in

Complexes of hybrid copolymers with heavy metals: preparation, properties and application as catalysts for oxidation

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

An Erratum to this article was published on 26 March 2015

Abstract

Metal complexes of hybrid copolymers (HC) and amino acid lysine were prepared by complex formation with salts in aqueous (VOSO4·5H2O, Na2MoO4·2H2O, FeCl2·4H2O, CoCl2·6H2O, CuCl2·2H2O) and organic [VO(acac)2 and MoO2Cl2] solutions. The optimal conditions for the formation of complexes between the hybrid copolymers and heavy metal ions were established. The studies carried out by FT-IR spectroscopy and electron paramagnetic resonance proved the formation of metal complexes. The one of their possible applications as catalysts for the oxidation of cyclohexene with organic hydroperoxides was shown. Good results from epoxidation were obtained using metal complexes with VO2+ and MoO2 2+. The activities of the complexes obtained toward cyclohexene epoxidation can be arranged in order: HC-MoO2 2+ > HC-VO2+. It was found out that only cyclohexene oxide is selectively obtained in this reaction. The contents of cyclohexene oxide and 2-cyclohexene-1-ol reached 38.5 and 10.4 %, respectively. In the future, new approaches should be sought for the preparation of polymer carriers with suitable amphiphilic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  1. Morell M, Puiggalí J (2013) Hybrid block copolymers constituted by peptides and synthetic polymers: an overview of synthetic approaches, supramolecular behavior and potential applications. Polymers 5:188–224. doi:10.3390/polym5010188

    Article  Google Scholar 

  2. Ivanova E, Dimitrov I, Kozarova R, Turmanova S, Apostolova M (2013) Thermally sensitive polypeptide-based copolymer for DNA complexation into stable nanosized polyplexes. J Nanopart Res 15(1):1358. doi:10.1007/s11051-012-1358-7

    Article  Google Scholar 

  3. Gkikas M, Iatrou H, Thomaidis S, Alexandridis P, Hadjichristidis N (2011) Well-defined homopolypeptides, copolypeptides, and hybrids of poly(l-proline). Biomacromolecules 12:2396–2406. doi:10.1021/bm200495n

    Article  CAS  Google Scholar 

  4. Börner G (2011) Precision polymers-modern tools to understand and program macromolecular interactions. Macromol Rapid Commun 32:115–126. doi:10.1002/marc.201000646

    Article  Google Scholar 

  5. Rabotyagova S, Cebe P, Kaplan L (2011) Protein-based block copolymers. Biomacromolecules 12:269–289. doi:10.1021/bm100928x

    Article  CAS  Google Scholar 

  6. Börner G, Kuhnle H, Hentschel J (2010) Making “smart polymers” smarter: modern concepts to regulate functions in polymer science. J Polym Sci, Part A: Polym Chem 48:1–14. doi:10.1002/pola.23727

    Article  Google Scholar 

  7. Mi P, Cabral H, Kokuryo D, Rafi M, Terada Y, Aoki I, Saga T, Takehiko I, Nishiyama N, Kataoka K (2013) Gd-DTPA-loaded polymer–metal complex micelles with high relaxivity for MR cancer imaging. Biomaterials 34:492–500. doi:10.1016/j.biomaterials.2012.09.030

    Article  CAS  Google Scholar 

  8. Zhou J, Yu X, Jin X, Tang G, Zhang W, Hu J, Zhong C (2013) Novel carbazole-based main chain polymeric metal complexes containing complexes of phenanthroline with Zn(II) or Cd(II): synthesis, characterization and photovoltaic application in DSSCs. J Mol Struct. doi:10.1016/j.molstruc.2013.10.015

    Google Scholar 

  9. Sultanov Yu, Wöhrle D, Efendiev A (2006) Metal-polymer complex catalysts on the base of polyethyleneimine for oxidation of sulfides. J Mol Catal A: Chem 258:77–82. doi:10.1016/j.molcata.2006.05.019

    Article  CAS  Google Scholar 

  10. Farzaneh F, Jalalian M, Tayebi L (2012) Epoxidation of alkenes with molecular oxygen catalyzed by immobilized Co(acac)2 and Co(bpy)2Cl2 complexes within nanoreactors of Al-MCM-41. E J Chem 9(4):2205–2212

    Article  CAS  Google Scholar 

  11. Bagherzadeh M, Esfahani S (2010) Epoxidation of olefins catalyzed by some cis-dioxomolybdenum(VI)-tridentate Schiff base complexes with tert-butyl hydroperoxide, Scientia Iranica Trans. C 17:131–138

    CAS  Google Scholar 

  12. Chatel G, Goux-Henry C, Kardos N, Suptil J, Andrioletti B, Draye M (2012) Ultrasound and ionic liquid: an efficient combination to tune the mechanism of alkenes epoxidation. Ultrason Sonochem 19:390–394. doi:10.1016/j.ultsonch.2011.10.007

    Article  CAS  Google Scholar 

  13. Jianga J, Zhang Y, Yan L, Jianga P (2012) Epoxidation of soybean oil catalyzed by peroxo phosphotungstic acid supported on modified halloysite nanotubes. Appl Surf Sci 258:6637–6642. doi:10.1016/j.apsusc.2012.03.095

    Article  Google Scholar 

  14. Tabushi I, Kodera M, Yokoyama M (1985) Kinetics and mechanism of reductive dioxygen activation catalyzed by P-450 model system. Iron picket fence as a catalytic center. J Am Chem Soc 107:4466–4473. doi:10.1021/ja00301a016

    Article  CAS  Google Scholar 

  15. Kr Vassilev, Turmanova S, Dimitrova M, St Boneva (2009) Poly(propylene imine) dendrimer complexes as catalysts for oxidation of alkenes. Eur Polym J 45:2269–2278

    Article  Google Scholar 

  16. Hille R (2002) Molybdenum and tungsten in biology. Trends Biochem Sci 27:360–367. doi:10.1016/S0968-0004(02)02107-2

    Article  CAS  Google Scholar 

  17. Karadia C, Gupta D (2009) Polarographic studies on the complexes of Ga(III), In(III) and Tl(I) with histidine. Rasayan J Chem 2(1):18–22

    CAS  Google Scholar 

  18. Steinreiber J, Ward R (2008) Artificial metalloenzymes as selective catalysts in aqueous media. Coord Chem Rev 252:751–766. doi:10.1016/j.ccr.2007.09.016

    Article  CAS  Google Scholar 

  19. Thomas M, Ward T (2005) Artificial metalloenzymes: proteins as hosts for enantioselective catalysis. Chem Soc Rev 34:337–346. doi:10.1039/B314695M

    Article  CAS  Google Scholar 

  20. Turmanova S, Vassilev Kr (2012) Molybdenum: characteristics, production and applications. In: Ortiz M, Herrera T (eds) Molybdenum complexes: structure, properties and applications. Nova Science Publishers, New York, pp 77–116

    Google Scholar 

  21. Turmanova S, Vassilev Kr, Boneva St (2008) Preparation, structure and properties of metal-copolymer complexes of poly-4-vinylpyridine radiation-grafted onto polymer films. React Funct Polym 68(3):759–767. doi:10.1016/j.reactfunctpolym.2007.11.015

    Article  CAS  Google Scholar 

  22. Kr Vassilev, Turmanova S (2008) Complexes of poly(2-N, N-dimethylaminoethyl) methacrylate with heavy metals I. Preparation and properties. Polym Bull 60(2–3):243–250. doi:10.1007/s00289-007-0864-8

    Google Scholar 

  23. Kr Vassilev, Turmanova S (2008) Complexes of poly(2-N,N-dimethylaminoethyl) methacrylate with heavy metals II. Oxidation of cyclohexene with tert-butylhydroperoxide. Polym Bull 60(4):467–475. doi:10.1007/s00289-007-0879-1

    Article  Google Scholar 

  24. Dimitrova M, Turmanova S, Kr Vassilev (2010) Complexes of glutathione with heavy metals as catalysts for oxidation. React Kinet Mech Catal 99(1):69–78. doi:10.1007/s11144-009-0118-x

    CAS  Google Scholar 

  25. Turmanova S (2007) Complexes of heavy metals with nitrogen containing copolymers—Electrochemical and physicomechanical properties. eXPRESS. Polym Lett 1(9):585–593. doi:10.3144/expresspolymlett.2007.80

    Article  CAS  Google Scholar 

  26. Aveston J, Anacker E, Johnson J (1964) Hydrolysis of molybdenum(VI). Ultracentrifugation, acidity measurements, and Raman spectra of polymolybdates. Inorg Chem 3(5):735–746

    Article  CAS  Google Scholar 

  27. Knobler C, Penfold B, Robinson W, Wilkins W, Yong S (1980) Molybdenum(VI) complexes from diols and aminoalcohols: the occurrence of MoO2, Mo2O3, and Mo2O5 core structures. J Chem Soc, Dalton Trans 2:248–252. doi:10.1039/DT9800000248

    Article  Google Scholar 

  28. Clark R, Brown D (1973) The chemistry of vanadium, niobium and tantalum. Pergamon Press, Elmsford, p 20

    Google Scholar 

  29. Olason G, Sherrington D (1999) Oxidation of cyclohexene by t-butylhydroperoxide and dioxygen catalyzed by polybenzimidazole-supported Cu, Mn, Fe, Ru and Ti complexes. React Funct Polym 42:163–172. doi:10.1016/S1381-5148(98)00065-0

    Article  CAS  Google Scholar 

  30. Kuska A, Yang H (1977) Effects of substituents on the spectroscopic properties of tetradentate ligand-oxovanadium(IV) complexes. Inorg Chem 16(8):1938–1941

    Article  CAS  Google Scholar 

  31. Selbin J, Holmes LH Jr, McGlym S (1963) Electronic structure, spectra and magnetic properties of oxycations-IV ligation effects on the infra-red spectrum of the vanadyl ion. J Inorg Nucl Chem 25:1359–1369

    Article  CAS  Google Scholar 

  32. Rajan O, Chakravorty A (1981) Molybdenum complexes. 1. Acceptor behavior and related properties of MoVIO2(tridentate) systems. Inorg Chem 20:660–664

    Article  CAS  Google Scholar 

  33. Basheer C, Vetrichelvan M, Perera A, Voliyaveettil S, Lee H (2005) Oxidation of cyclohexene in a simple capillary-microreactor. Int J Nanosci 4:599–606. doi:10.1142/S0219581X05003310

    Article  CAS  Google Scholar 

  34. Yang Z, Kang Q, Ma H, Lei C (2004) Oxidation of cyclohexene by dendritic PAMAMSA-Mn(II) complexes. J Mol Catal A: Chem 213:169–176. doi:10.1016/j.molcata.2003.12.016

    Article  CAS  Google Scholar 

  35. Jorgensen K (1989) Transition-metal-catalyzed epoxidations. Chem Rev 89:431–458. doi:10.1021/cr00093a001

    Article  Google Scholar 

  36. Weiner H, Trovarelli A, Eiuke R (2003) Expanded product, plus kinetic and mechanistic, studies of polyoxoanion-based cyclohexene oxidation catalysis: the detection of ∼ 70 products at higher conversion leading to a simple, product-based test for the presence of olefin autoxidation. J Mol Catal A: Chem 191:217–252. doi:10.1016/S1381-1169(02)00344-8

    Article  CAS  Google Scholar 

  37. Kr Vassilev, Dimitrova M, Turmanova S, Milina R (2013) Catalytic activity of histidine-metal complexes in oxidation reactions. Synth React Inorg Metal Org Nano Metal Chem 43:243–249. doi:10.1080/15533174.2012.740713

    Article  Google Scholar 

  38. Ghadir M, Farzaneh F, Ghandi M, Alizadeh M (2005) Immobilized copper(II) complexes on montmorillonite and MCM-41 as selective catalysts for epoxidation of alkenes. J Mol Catal A: Chem 233:127–131. doi:10.1016/j.molcata.2005.01.046

    Article  Google Scholar 

  39. Vrubel H, Ciuffi K, Ricci G, Nunes F, Nakagaki S (2009) Highly selective catalytic epoxidation of cyclohexene and cyclooctene with t-butyl hydroperoxide by molybdenum(VI) compounds heterogenized in silica produced by the sol-gel process. Appl Catal A Gen 368:139–145. doi:10.1016/j.apcata.2009.08.019

    Article  CAS  Google Scholar 

  40. Sheldon R (1980) Synthetic and mechanistic aspects of metal-catalysed epoxidations with hydroperoxides. J Mol Catal 7:107–126. doi:10.1016/0304-5102(80)85010-3

    Article  CAS  Google Scholar 

  41. Sherrington D (2000) Polymer-supported metal complex alkene epoxidation catalysts. Catal Today 57:87–104

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevdalina Chr. Turmanova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turmanova, S.C., Dimitrov, I.V., Ivanova, E.D. et al. Complexes of hybrid copolymers with heavy metals: preparation, properties and application as catalysts for oxidation. Polym. Bull. 72, 1301–1317 (2015). https://doi.org/10.1007/s00289-015-1338-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1338-z

Keywords

Navigation