Skip to main content
Log in

Collagen-based hydrogel films as drug-delivery devices with antimicrobial properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Collagen (coll)-containing hydrogel films were prepared by mixing degraded collagen with monomers such as acrylamide (AAm), and 2-hydroxy ethylmethacrylate (HEMA) before the polymerization/cross-linking of composites as p(coll-co-AAm), and p(coll-co-HEMA), respectively. These materials were used as drug-delivery devices for potential wound dressing materials by loading and releasing of model drugs such as gallic acid (GA) and naproxen (NP). A linear release profile was obtained up to 32-h release from GA-loaded p(coll-co-AAm) interpenetrating polymeric networks films, and 36-h linear release profile of NP for p(coll-co-HEMA). Furthermore, metal nanoparticles such as Ag and Cu prepared within these hydrogel films offered antimicrobial characteristic against known common bacteria such as Escherichia coli, Bacillus subtilis, and Staphylococcus aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reich G (2007) From collagen to leather-the theoretical background. Basf, Ludwigshafen, pp 1–329

    Google Scholar 

  2. Madhan B, Thanikaivelan P, Subramanian V et al (2001) Molecular mechanics and dynamics studies on the interaction of gallic acid with collagen-like peptides. Chem Phys Lett 346:334–340

    Article  CAS  Google Scholar 

  3. Lu J, Lee C, Bent S et al (2007) Thin collagen film scaffolds for retinal epithelial cell culture. Biomaterials 28:1486–1494

    Article  CAS  Google Scholar 

  4. Di Y, Heath RJ (2009) Collagen stabilization and modification using a polyepoxide, triglycidyl isocyanurate. Polym Degrad Stab 94:1684–1692

    Article  CAS  Google Scholar 

  5. Kim HS, Hobbs HL, Wang L et al (2009) Biocompatible composites of polyaniline nanofibers and collagen. Synth Met 159:1313–1318

    Article  CAS  Google Scholar 

  6. Cheng Z, Teoh S (2004) Surface modification of ultrathin poly (epsilon-caprolactone) films using acrylic acid and collagen. Biomaterials 25:1991–2001

    Article  CAS  Google Scholar 

  7. Maeda M, Tani S, Sano A et al (1999) Microstructure and release characteristics of the minipellet, a collagen-based drug delivery system for controlled release of protein drugs. J Controlled Release 62:313–324

    Article  CAS  Google Scholar 

  8. Hoyer B, Bernhardt A, Heinemann S et al (2009) Biomimetically mineralized salmon collagen scaffolds for application in bone tissue engineering. Biomacromolecules 13:1059–1066

    Article  Google Scholar 

  9. Chaubaroux C, Vrana E, Debry C et al (2009) Collagen-based fibrillar multilayer films cross-linked by a natural agent. Biomacromolecules 13:2128–2135

    Article  Google Scholar 

  10. Brinkman W, Nagapudi K, Thomas B et al (2003) Photo-cross-linking of type I collagen gels in the presence of smooth muscle cells: mechanical properties, cell viability, and function. Biomacromolecules 4:890–895

    Article  CAS  Google Scholar 

  11. Li Y, Thula TT, Jee S et al (2012) Biomimetic mineralization of woven bone-like nanocomposites: role of collagen cross-links. Biomacromolecules 13:49–59

    Article  Google Scholar 

  12. Yang C, Xu L, Zhou Y et al (2010) A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing. Carbohydr Polym 82:1297–1305

    Article  CAS  Google Scholar 

  13. Li J, Mak A (2007) Transfer of collagen coating from porogen to scaffold: collagen coating within poly(dl-lactic-co-glycolic acid) scaffold. Compos B 38:317–323

    Article  Google Scholar 

  14. Xue Yumeng, Wang Ling, Shao Yongping, Yan Jin, Chen Xiaofeng, Lei Bo (2014) Facile and green fabrication of biomimetic gelatin–siloxane hybrid hydrogel with highly elastic properties for biomedical applications. Chem Eng J 251:158–164

    Article  CAS  Google Scholar 

  15. Ekici S, Ilgin P, Butun S, Sahiner N (2011) Hyaluronic acid hydrogel particles with tunable charges as potential drug delivery devices. Carbohydr Polym 84:1306–1313

    Article  CAS  Google Scholar 

  16. Ayyala RS, Duarte JL, Sahiner N (2006) Glaucoma drainage devices: state of the art. Expert Rev Med Devices 3:509–521

    Article  Google Scholar 

  17. Moustafa AB, Sobh RA, Rabie AM et al (2013) Synthesis and in vitro release of guest drugs-loaded copolymer nanospheres MMA/HEMA via differential microemulsion polymerization. J Appl Polym Sci 129:853–865

    Article  CAS  Google Scholar 

  18. Omidian H, Park K, Kalam U et al (2010) Swelling and mechanical properties of modified hema-based superporous hydrogels. J Bioact Compat Polym 25:483–497

    Article  CAS  Google Scholar 

  19. Blake DA, Sahiner N, John VT et al (2006) Inhibition of cell proliferation by mitomycin C incorporated into p(HEMA) hydrogels. J Glaucoma 15:291–298

    Article  Google Scholar 

  20. Hebeish A, El-Rafie MH, EL-Sheikh MA, Seleem AA, El-Naggar ME (2014) Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int J Biol Macromol 65:509–515

    Article  CAS  Google Scholar 

  21. Hebeish A, El-Naggar ME, Fouda MMG, Ramadan MA, Al-Deyab SS, El-Rafie MH (2011) Highly effective antibacterial textiles containing green synthesized silver nanoparticles. Carbohydr Polym 86:936–940

    Article  CAS  Google Scholar 

  22. Orlowski P, Krzyzowska M, Zdanowski R, Winnicka A, Nowakowska J, Stankiewicz W, Tomaszewska E, Celichowski G, Grobelny J (2013) Assessment of in vitro cellular responses of monocytes and keratinocytes to tannic acid modified silver nanoparticles. Toxicol In Vitro 27:1798–1808

    Article  CAS  Google Scholar 

  23. Cho KH, Park JE, Osaka T, Park SG (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta 51:956–960

    Article  CAS  Google Scholar 

  24. Nelson DL, Cox MM, (2008) Lehninger principles of biochemistry. W.H. Freeman and Company, New York

  25. Brook LA, Evans P, Foster HA, Pemble ME, Steele A, Sheel DW, Yates HM (2007) Highly bioactive silver and silver/titania composite films grown by chemical vapour deposition. J Photochem Photobiol A 187:53–63

    Article  CAS  Google Scholar 

  26. Daneshfar A, Ghazlaskar H, Homayoun N (2008) Solubility of gallic acid in methanol, ethanol, water, and ethyl acetate. J Chem Eng Data 53:776–778

    Article  CAS  Google Scholar 

  27. Fazary A, Taha M, Ju Y (2009) Iron complexation studies of gallic acid. J Chem Eng Data 54:35–42

    Article  CAS  Google Scholar 

  28. Khan NS, Ahmad A, Hadi SM (2000) Anti-oxidant, pro-oxidant properties of tannic acid and its binding to DNA. Chem Biol Interact 125:177–189

    Article  CAS  Google Scholar 

  29. Verma S, Singh A, Mishra A (2013) Gallic acid: molecular rival of cancer. Environ Toxicol Pharmacol 35:473–485

    Article  CAS  Google Scholar 

  30. Locatelli C, Filippin-Monteiro FB, Creczynski-Pasa T (2013) Alkyl esters of gallic acid as anticancer agents. Rev Eur J Med Chem 60:233–239

    Article  CAS  Google Scholar 

  31. Yu SH, MiFL Pang JC et al (2011) Preparation and characterization of radical and pH-responsive chitosan–gallic acid conjugate drug carriers. Carbohydr Polym 84:794–802

    Article  CAS  Google Scholar 

  32. Mandal A, Meda V, Zhang WJ et al (2012) Synthesis, characterization and comparison of antimicrobial activity of PEG/TritonX-100 capped silver nanoparticles on collagen scaffold. Colloids Surf B Biointerfaces 90:191–196

    Article  CAS  Google Scholar 

  33. Chen S, Wu G, Zeng H (2005) Preparation of high antimicrobial activity thiourea chitosan–Ag+ complex. Carbohydr Polym 60:33–38

    Article  CAS  Google Scholar 

  34. Castaneda L, Valle J, Yang N et al (2008) Collagen cross-linking with Au nanoparticles. Biomacromolecules 9:3383–3388

    Article  CAS  Google Scholar 

  35. Sahiner N (2013) Preparation of poly(ethylene imine) particles for versatile applications. Colloids Surf A Physicochem Eng Aspects 433:212–218

    Article  CAS  Google Scholar 

  36. Ozay O, Akcali A, Otkun MT et al (2010) P(4-VP) based nanoparticles and composites with dual action as antimicrobial materials. Colloids Surf B Biointerfaces 79:460–466

    Article  CAS  Google Scholar 

  37. Silan C, Akcali A, Otkun MT (2012) Novel hydrogel particles and their IPN films as drug delivery systems with antibacterial properties. Colloids Surf B 89:248–253

    Article  CAS  Google Scholar 

  38. Michels HT, Noyce JO, Keevil CW (2009) Effects of temperature and humidity on the efficacy of methicillin-resistant Staphylococcus aureus challenged antimicrobial materials containing silver and copper. Lett Appl Microbiol 49:191–195

    Article  CAS  Google Scholar 

  39. Şahiner M, Bütün S, Alpaslan D, Bitlisli BO (2014) Preparation of collagen based composite materials with synthetic polymers for potential wound dressing applications. Hacettepe J Biol Chem 42:63–69

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehtap Sahiner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahiner, M., Alpaslan, D. & Bitlisli, B.O. Collagen-based hydrogel films as drug-delivery devices with antimicrobial properties. Polym. Bull. 71, 3017–3033 (2014). https://doi.org/10.1007/s00289-014-1235-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1235-x

Keywords

Navigation