Skip to main content
Log in

Non-isothermal crystallization kinetics of poly(ethylene terephthalate)/mica composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The non-isothermal crystallization kinetics of pure poly(ethylene terephthalate) (PET), PET/mica and PET/TiO2-coated mica composites were investigated by differential scanning calorimetry with different theoretical models, including the modified Avrami method, Ozawa method and Mo method. The activation energies of non-isothermal crystallization were calculated by Kissinger method and Flynn–Wall–Ozawa method. The results show that the modified Avrami equation and Ozawa theory fail to describe the non-isothermal crystallization behavior of all composites, while the Mo model fits the experiment data fair well. It is also found that the mica and TiO2-coated mica could act as heterogeneous nucleating agent and accelerate the crystallization rates of PET, and the effect of TiO2-coated mica is stronger than that of mica. The result is further reinforced by calculating the effective activation energy of the non-isothermal crystallization process for all composites using the Kissinger method and the Flynn–Wall–Ozawa method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chan CM, Wu J, Li JX, Cheung YK (2002) Polypropylene/calcium carbonate nanocomposites. Polymer 43:2981–2992

    Article  CAS  Google Scholar 

  2. Cauvin L, Kondo D, Brieu M, Bhatnagar N (2010) Mechanical properties of polypropylene layered silicate nanocomposites: characterization and micro-macro modelling. Polym Test 29:245–250

    Article  CAS  Google Scholar 

  3. Qin H, Zhang S, Zhao C, Feng M, Yang M, Shu Z, Yang S (2004) Thermal stability and flammability of polypropylene/montmorillonite composites. Polym Degrad Stab 85:807–813

    Article  CAS  Google Scholar 

  4. Qin H, Su Q, Zhang S, Zhao B, Yang M (2003) Thermal stability and flammability of polyamide 66/montmorillonite nanocomposites. Polymer 44:7533–7538

    Article  CAS  Google Scholar 

  5. Sun L, Yang JT, Lin GY, Zhong MQ (2007) Crystallization and thermal properties of polyamide 6 composites filled with different nanofillers. Mater Lett 61:3963–3966

    Article  CAS  Google Scholar 

  6. Zhu P, Chen J, Wu C (2009) Crystallization behavior and mechanical properties of polypropylene/modified carbon black composites. Polym Composit 30:391–398

    Article  CAS  Google Scholar 

  7. Ramesh V, Panda B, Mohanty S, Nayak SK (2012) Effect of surface-treated TiO2 on non-isothermal crystallization behavior of poly trimethylene terephthalate nanocomposites. Polym Composit 33:2177–2187

    Article  CAS  Google Scholar 

  8. Raffa P, Coltelli MB, Savi S, Bianchi S, Castelvetro V (2012) Chain extension and branching of poly(ethylene terephthalate) (PET) with di- and multifunctional epoxy or isocyanate additives: An experimental and modelling study. React Funct Polym 72:50–60

    Article  CAS  Google Scholar 

  9. Srithep Y, Javadi A, Pilla S, Turng LS, Gong S, Clemons C, Peng J (2012) Chain extension and branching of poly(ethylene terephthalate) (PET) with di- and multifunctional epoxy or isocyanate additives: an experimental and modelling study. React Funct Polym 72:50–60

    Article  Google Scholar 

  10. Antoniadis G, Paraskevopoulos KM, Vassiliou AA, Papageorgiou GZ, Bikiaris D, Chrissafis K (2011) Nonisothermal melt-crystallization kinetics for in situ prepared poly(ethylene terephthalate)/monmorilonite (PET/OMMT). Thermochimi Acta 521:161–169

    Article  CAS  Google Scholar 

  11. Wang Y, Gao J, Ma Y, Agarwal US (2006) Study on mechanical properties, thermal stability and crystallization behavior of PET/MMT nanocomposites. Compos Part B Eng 37:399–407

    Article  Google Scholar 

  12. Yang Y, Xu H, Gu H (2006) Preparation and crystallization of poly(ethylene terephthalate)/SiO2 nanocomposites by in-situ polymerization. J Appl Polym Sci 102:655–662

    Article  CAS  Google Scholar 

  13. Zhu X, Wang B, Chen S, Wang C, Zhang Y, Wang H (2008) Synthesis and non-isothermal crystallization behavior of PET/surface-treated TiO2 nanocomposites. J Macromol Sci Part B Phys 47:1117–1129

    Article  CAS  Google Scholar 

  14. Tomar N, Maiti SN (2010) Mechanical properties of mica-filled PBT/ABAS composites. J Appl Polym Sci 117:672–681

    Article  CAS  Google Scholar 

  15. Wang X, You F, Zhang FS, Li J, Guo S (2011) Experimental and theoretic studies on sound transmission loss of laminated mica-filled poly(vinyl chloride) composites. J Appl Polym Sci 122:1427–1433

    Article  CAS  Google Scholar 

  16. Yazdani H, Morshedian J, Khonakdar HA (2006) Effect of maleated polypropylene and impact modifiers on the morphology and mechanical properties of PP/Mica composites. Polym Composite 27:614–620

    Article  CAS  Google Scholar 

  17. Parvaiz MR, Mohanty S, Nayak SK, Mahanwar PA (2010) Polyetheretherketone composites reinforced with surface modified mica. Polym Compos 31:2121–2128

    Article  CAS  Google Scholar 

  18. Ray SS, Bousmina M (2006) Crystallization behavior of poly[(butylene succinate)-co-adipate] nanocomposite. Macromol Chem Phys 207:1207–1219

    Article  CAS  Google Scholar 

  19. Soon K, Harkin-Jones E, Rajeev RS, Menary G, Martin PJ, Armstrong CG (2012) Morphology, barrier, and mechanical properties of biaxially deformed poly(ethylene terephthalate)-mica nanocomposites. Polym Eng Sci 52:532–548

    Article  CAS  Google Scholar 

  20. Zhang N, Qu J, Tan B, Lu X, Huang J, Zhang G, Zhao Y, Jin G (2013) Non-isothermal crystallization kinetics and morphology of mica particles filled biodegradable poly(butylene succinate). J Appl Polym Sci 130:2544–2556

    Article  CAS  Google Scholar 

  21. Avrami M (1940) Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224

    CAS  Google Scholar 

  22. Gao Y, Wang Y, Shi J, Bai H, Song B (2008) Functionalized multi-walled carbon nanotubes improve non-isothermal crystallization of poly(ethylene terephthalate). Polym Test 27:179–188

    Article  CAS  Google Scholar 

  23. Chen Z, Yao C, Yang G (2012) Non-isothermal crystallization behavior, and morphology of poly(trimethylene terephthalate)/polyethylene glycol copolymers. Polym Test 31:393–403

    Article  CAS  Google Scholar 

  24. Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM (2012) Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polym Degrad Stabil 97:2027–2036

    Article  CAS  Google Scholar 

  25. Jeziorny A (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC. Polymer 19:1142–1144

    Article  CAS  Google Scholar 

  26. Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12:150–158

    Article  CAS  Google Scholar 

  27. Joshi M, Butola BS (2004) Studies on nonisothermal crystallization of HDPE/POSS nanocomposites. Polymer 45:4953–4968

    Article  CAS  Google Scholar 

  28. Liu T, Mo Z, Wang S, Zhang H (1997) Nonisothermal melt and cold crystallization kinetics of poly (aryl ether ether ketone ketone). Polym Eng Sci 37:568–575

    Article  CAS  Google Scholar 

  29. Xue ML, Sheng J, Yu YL, Chuah HH (2004) Nonisothermal crystallization kinetics and spherulite morphology of poly (trimethylene terephthalate). Eur Polym J 40:811–818

    Article  CAS  Google Scholar 

  30. Liu FY, Xu CL, Zeng JB, Li SL, Wang YZ (2013) Non-isothermal crystallization kinetics of biodegradable poly(butylene succinate-co-diethylene glycol succinate) copolymers. Thermochim Act 568:38–45

    Article  CAS  Google Scholar 

  31. Cao K, Wang Q, Zhou YC, Sun JM, Yao Z (2012) Crystallization behavior of reactive blends between PBS and PA6IcoT. Ind Eng Chem Res 51:5461–5468

    Article  CAS  Google Scholar 

  32. Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand 57:217–221

    Article  CAS  Google Scholar 

  33. Vyazovkin S, Sbirrazzuoli N (2006) Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun 27:1515–1532

    Article  CAS  Google Scholar 

  34. Supaphol P, Dangseeyun N, Srimoaon P (2004) Non-isothermal melt crystallization kinetics for poly(trimethylene terephthalate)/poly(butylene terephthalate) blends. Polym Test 23:175–185

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Plan Projects of Fujian Province (2012H6005), Key Project of Fujian Department Science and Technology (2013H0017), the Projects of Fujian Provincial Department of Education (JA10087) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (2011-1568).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingrong Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Zhang, H., Ke, M. et al. Non-isothermal crystallization kinetics of poly(ethylene terephthalate)/mica composites. Polym. Bull. 71, 2287–2301 (2014). https://doi.org/10.1007/s00289-014-1187-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1187-1

Keywords

Navigation