Skip to main content

Advertisement

Log in

MITF suppression by CH5552074 inhibits cell growth in melanoma cells

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Although treatment of melanoma with BRAF inhibitors and immune checkpoint inhibitors achieves a high response rate, a subset of melanoma patients with intrinsic and acquired resistance are insensitive to these therapeutics, so to improve melanoma therapy other target molecules need to be found. Here, we screened our chemical library to identify an anti-melanoma agent and examined its action mechanisms to show cell growth inhibition activity.

Methods

We screened a chemical library against multiple skin cancer cell lines and conducted ingenuity pathway analysis (IPA) to investigate the mechanisms of CH5552074 activity. Suppression of microphthalmia-associated transcription factor (MITF) expression levels was determined in melanoma cells treated with CH5552074. Cell growth inhibition activity of CH5552074 was evaluated in MITF-dependent melanoma cell lines.

Results

We identified an anti-melanoma compound, CH5552074, which showed remarkable cell growth inhibition activity in melanoma cell lines. The IPA results suggested that CH5552074-sensitive cell lines had activated MITF. In further in vitro studies in the melanoma cell lines, a knockdown of MITF with siRNA resulted in cell growth inhibition, which showed that CH5552074 inhibited cell growth by reducing the expression level of MITF protein.

Conclusions

These results suggest that CH5552074 can inhibit cell growth in melanoma cells by reducing the protein level of MITF. MITF inhibition by CH5552074 would be an attractive option for melanoma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Flaherty KT, Infante JR, Daud A et al (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 367(18):1694–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Larkin J, Ascierto PA, Dréno B et al (2014) Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med 371(20):1867–1876

    Article  PubMed  Google Scholar 

  4. Johannessen CM, Johnson LA, Piccioni F et al (2013) A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 504(7478):138–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Van Allen EM, Wagle N, Sucker A et al (2014) The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov 4(1):94–109

    Article  PubMed  Google Scholar 

  6. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hamid O, Robert C, Daud A et al (2013) Safety and tumor responses with lambrolizumab (Anti–PD-1) in melanoma. N Engl J Med 369(2):134–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Robert C, Ribas A, Wolchok JD et al (2014) Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet 384(9948):1109–1117

    Article  CAS  PubMed  Google Scholar 

  9. Postow MA, Chesney J, Pavlick AC et al (2015) Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 372(21):2006–2017

    Article  PubMed  Google Scholar 

  10. King R, Googe PB, Weilbaecher KN et al (2001) Microphthalmia transcription factor expression in cutaneous benign, malignant melanocytic, and nonmelanocytic tumors. The American journal of surgical pathology 25(1):51–57

    Article  CAS  PubMed  Google Scholar 

  11. Levy C, Khaled M, Fisher DE (2006) MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 12(9):406–414

    Article  CAS  PubMed  Google Scholar 

  12. Wellbrock C, Rana S, Paterson H et al (2008) Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS One 3(7):e2734

    Article  PubMed  PubMed Central  Google Scholar 

  13. Garraway LA, Widlund HR, Rubin MA et al (2005) Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436(7047):117–122

    Article  CAS  PubMed  Google Scholar 

  14. Mizuno H, Nakanishi Y, Ishii N et al (2009) A signature-based method for indexing cell cycle phase distribution from microarray profiles. BMC Genom 10(1):1–10

    Article  Google Scholar 

  15. Krämer A, Green J, Pollard J et al (2014) Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30(4):523–530

    Article  PubMed  Google Scholar 

  16. Nakanishi Y, Mizuno H, Sase H et al (2015) ERK signal suppression and sensitivity to CH5183284/Debio 1347, a selective FGFR inhibitor. Mol Cancer Ther 14(12):2831–2839

    Article  CAS  PubMed  Google Scholar 

  17. Miller AJ, Du J, Rowan S et al (2004) Transcriptional regulation of the melanoma prognostic marker melastatin (TRPM1) by MITF in melanocytes and melanoma. Cancer Res 64(2):509–516

    Article  CAS  PubMed  Google Scholar 

  18. Du J, Fisher DE (2002) Identification of Aim-1 as the underwhite mouse mutant and its transcriptional regulation by MITF. J Biol Chem 277(1):402–406

    Article  CAS  PubMed  Google Scholar 

  19. Moffat JG, Rudolph J, Bailey D (2014) Phenotypic screening in cancer drug discovery—past, present and future. Nat Rev Drug Discov 13(8):588–602

    Article  CAS  PubMed  Google Scholar 

  20. Yamaguchi T, Yoshida T, Kurachi R et al (2007) Identification of JTP-70902, a p15(INK4b)-inductive compound, as a novel MEK1/2 inhibitor. Cancer Sci 98(11):1809–1816

    Article  CAS  PubMed  Google Scholar 

  21. Smith MP, Ferguson J, Arozarena I et al (2013) Effect of SMURF2 targeting on susceptibility to MEK inhibitors in melanoma. J Natl Cancer Inst 105(1):33–46

    Article  CAS  PubMed  Google Scholar 

  22. Borgdorff V, Rix U, Winter GE et al (2014) A chemical biology approach identifies AMPK as a modulator of melanoma oncogene MITF. Oncogene 33(19):2531–2539

    Article  CAS  PubMed  Google Scholar 

  23. Yokoyama S, Feige E, Poling LL et al (2008) Pharmacologic suppression of MITF expression via HDAC inhibitors in the melanocyte lineage. Pigment Cell Melanoma Res 21(4):457–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smith Michael P, Brunton H, Rowling Emily J et al (2016) Inhibiting drivers of non-mutational drug tolerance is a salvage strategy for targeted melanoma therapy. Cancer Cell 29(3):270–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kubic JD, Young KP, Plummer RS et al (2008) Pigmentation PAX-ways: the role of Pax3 in melanogenesis, melanocyte stem cell maintenance, and disease. Pigment Cell Melanoma Res 21(6):627–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haq R, Shoag J, Andreu-Perez P et al (2013) Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell 23(3):302–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gopal YNV, Rizos H, Chen G et al (2014) Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1α and oxidative phosphorylation in melanoma. Cancer Res 74(23):7037–7047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Eigo Suyama, Nobuya Ishii, Yuko Aoki, Masahiro Aoki, and Osamu Kondoh for helpful discussions and Nobuhiro Oikawa for compound synthesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Aida.

Ethics declarations

Conflict of interest

All of the authors are employees of Chugai Pharmaceutical Co., Ltd.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aida, S., Sonobe, Y., Yuhki, M. et al. MITF suppression by CH5552074 inhibits cell growth in melanoma cells. Cancer Chemother Pharmacol 79, 1187–1193 (2017). https://doi.org/10.1007/s00280-017-3317-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-017-3317-6

Keywords

Navigation