Skip to main content

Advertisement

Log in

Irinotecan-induced mucositis: the interactions and potential role of GLP-2 analogues

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

A common side effect of irinotecan administration is gastrointestinal mucositis, often manifesting as severe diarrhoea. The damage to the structure and function of the gastrointestinal tract caused by this cytotoxic agent is debilitating and often leads to alterations in patients’ regimens, hospitalisation or stoppage of treatment. The purpose of this review is to identify mechanisms of irinotecan-induced intestinal damage and a potential role for GLP-2 analogues for intervention.

Methods

This is a review of current literature on irinotecan-induced mucositis and GLP-2 analogues mechanisms of action.

Results

Recent studies have found alterations that appear to be crucial in the development of severe intestinal mucositis, including early apoptosis, alterations in proliferation and cell survival pathways, as well as induction of inflammatory cascades. Several studies have indicated a possible role for glucagon-like peptide-2 analogues in treating this toxicity, due to its proven intestinotrophic, anti-apoptotic and anti-inflammatory effects in other models of gastrointestinal disease.

Conclusion

This review provides evidence as to why and how this treatment may improve mucositis through the possible molecular crosstalk that may be occurring in models of severe intestinal mucositis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Logan RM, Gibson RJ, Bowen JM, Stringer AM, Sonis ST, Keefe DM (2008) Characterisation of mucosal changes in the alimentary tract following administration of irinotecan: implications for the pathobiology of mucositis. Cancer Chemother Pharmacol 62(1):33–41. doi:10.1007/s00280-007-0570-0

    Article  CAS  PubMed  Google Scholar 

  2. Burkitt H, Young B, Hath JW (1993) Wheater’s functional histology; a text and colour atlas. Wheater’s functional histology; a text and colour atlas. Churchill Livingstone, London, pp 247–270

    Google Scholar 

  3. Stringer AM, Gibson RJ, Bowen JM, Keefe DM (2009) Chemotherapy-induced modifications to gastrointestinal microflora: evidence and implications of change. Curr Drug Metab 10(1):79–83

    Article  CAS  PubMed  Google Scholar 

  4. Gibson RJ, Bowen JM, Alvarez E, Finnie J, Keefe DM (2007) Establishment of a single-dose irinotecan model of gastrointestinal mucositis. Chemotherapy 53(5):360–369. doi:10.1159/000107458

    Article  CAS  PubMed  Google Scholar 

  5. Lalla RV, Bowen J, Barasch A, Elting L, Epstein J, Keefe DM, McGuire DB, Migliorati C, Nicolatou-Galitis O, Peterson DE, Raber-Durlacher JE, Sonis ST, Elad S, Mucositis Guidelines Leadership Group of the Multinational Association of Supportive Care in C, International Society of Oral O (2014) MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer 120(10):1453–1461. doi:10.1002/cncr.28592

    Article  PubMed  PubMed Central  Google Scholar 

  6. Keefe DM, Gibson RJ, Hauer-Jensen M (2004) Gastrointestinal mucositis. Semin Oncol Nurs 20(1):38–47

    Article  PubMed  Google Scholar 

  7. Elting LS, Shih YC, Stiff PJ, Bensinger W, Cantor SB, Cooksley C, Spielberger R, Emmanoulides C (2007) Economic impact of palifermin on the costs of hospitalization for autologous hematopoietic stem-cell transplant: analysis of phase 3 trial results. Biology Blood Marrow Transplant 13(7):806–813

    Article  CAS  Google Scholar 

  8. Peterson DE, Bensadoun RJ, Roila F (2011) Management of oral and gastrointestinal mucositis: ESMO Clinical Practice Guidelines. Ann Oncol 22(Suppl 6):vi78–vi84

    PubMed  PubMed Central  Google Scholar 

  9. Bleiberg H, Cvitkovic E (1996) Characterisation and clinical management of CPT-11 (irinotecan)-induced adverse events: the European perspective. Eur J Cancer 32A(Suppl 3):S18–s23

    Article  CAS  PubMed  Google Scholar 

  10. National Institutes of Health NCI (2009) Common terminology criteria for adverse events (CTCAE). vol 4.00. United States of America

  11. Wall ME, Wani MC (1996) Camptothecin and taxol: from discovery to clinic. J Ethnopharmacol 51(1–3):239–253 (discussion 253–234)

    Article  CAS  PubMed  Google Scholar 

  12. Takasuna K, Hagiwara T, Watanabe K, Onose S, Yoshida S, Kumazawa E, Nagai E, Kamataki T (2006) Optimal antidiarrhea treatment for antitumor agent irinotecan hydrochloride (CPT-11)-induced delayed diarrhea. Cancer Chemother Pharmacol 58(4):494–503. doi:10.1007/s00280-006-0187-8

    Article  CAS  PubMed  Google Scholar 

  13. Liu LF, Desai SD, Li TK, Mao Y, Sun M, Sim SP (2000) Mechanism of action of camptothecin. Ann N Y Acad Sci 922:1–10

    Article  CAS  PubMed  Google Scholar 

  14. Takasuna K, Hagiwara T, Hirohashi M, Kato M, Nomura M, Nagai E, Yokoi T, Kamataki T (1996) Involvement of beta-glucuronidase in intestinal microflora in the intestinal toxicity of the antitumor camptothecin derivative irinotecan hydrochloride (CPT-11) in rats. Cancer Res 56(16):3752–3757

    CAS  PubMed  Google Scholar 

  15. Yumuk PF, Aydin SZ, Dane F, Gumus M, Ekenel M, Aliustaoglu M, Karamanoglu A, Sengoz M, Turhal SN (2004) The absence of early diarrhea with atropine premedication during irinotecan therapy in metastatic colorectal patients. Int J Colorectal Dis 19(6):609–610. doi:10.1007/s00384-004-0613-5

    Article  CAS  PubMed  Google Scholar 

  16. Yang X, Hu Z, Chan SY, Chan E, Goh BC, Duan W, Zhou S (2005) Novel agents that potentially inhibit irinotecan-induced diarrhea. Curr Med Chem 12(11):1343–1358

    Article  CAS  PubMed  Google Scholar 

  17. O’Brien BE, Kaklamani VG, Benson AB 3rd (2005) The assessment and management of cancer treatment-related diarrhea. Clinl Colorectal Cancer 4(6):375–381 (discussion 382-373)

    Article  PubMed  Google Scholar 

  18. Awouters F, Megens A, Verlinden M, Schuurkes J, Niemegeers C, Janssen PA (1993) Loperamide. Survey of studies on mechanism of its antidiarrheal activity. Dig Dis Sci 38(6):977–995

    Article  CAS  PubMed  Google Scholar 

  19. Suzuki T, Sakai H, Ikari A, Takeguchi N (2000) Inhibition of thromboxane A(2)-induced Cl(-) secretion by antidiarrhea drug loperamide in isolated rat colon. J Pharmacol Exp Ther 295(1):233–238

    CAS  PubMed  Google Scholar 

  20. Cunningham D, Pyrhonen S, James RD, Punt CJ, Hickish TF, Heikkila R, Johannesen TB, Starkhammar H, Topham CA, Awad L, Jacques C, Herait P (1998) Randomised trial of irinotecan plus supportive care versus supportive care alone after fluorouracil failure for patients with metastatic colorectal cancer. Lancet 352(9138):1413–1418. doi:10.1016/S0140-6736(98)02309-5

    Article  CAS  PubMed  Google Scholar 

  21. Barbounis V, Koumakis G, Vassilomanolakis M, Demiri M, Efremidis AP (2001) Control of irinotecan-induced diarrhea by octreotide after loperamide failure. Support Care Cancer 9(4):258–260

    Article  CAS  PubMed  Google Scholar 

  22. Peterson DE, Bensadoun RJ, Roila F (2008) Management of oral and gastrointestinal mucositis: ESMO clinical recommendations. Ann Oncol 19(Suppl 2):ii122–ii125

    PubMed  Google Scholar 

  23. Stringer AM, Gibson RJ, Logan RM, Bowen JM, Yeoh AS, Keefe DM (2008) Faecal microflora and beta-glucuronidase expression are altered in an irinotecan-induced diarrhea model in rats. Cancer Biol Ther 7(12):1919–1925

    Article  CAS  PubMed  Google Scholar 

  24. Kehrer DF, Sparreboom A, Verweij J, de Bruijn P, Nierop CA, van de Schraaf J, Ruijgrok EJ, de Jonge MJ (2001) Modulation of irinotecan-induced diarrhea by cotreatment with neomycin in cancer patients. Clin Cancer Res 7(5):1136–1141

    CAS  PubMed  Google Scholar 

  25. Mori K, Kondo T, Kamiyama Y, Kano Y, Tominaga K (2003) Preventive effect of Kampo medicine (Hangeshashin-to) against irinotecan-induced diarrhea in advanced non-small-cell lung cancer. Cancer Chemother Pharmacol 51(5):403–406. doi:10.1007/s00280-003-0585-0

    CAS  PubMed  Google Scholar 

  26. Sergio GC, Felix GM, Luis JV (2008) Activated charcoal to prevent irinotecan-induced diarrhea in children. Pediatr Blood Cancer 51(1):49–52. doi:10.1002/pbc.21491

    Article  PubMed  Google Scholar 

  27. Capizzi RL (1999) Clinical status and optimal use of amifostine. Oncology 13(1):47–59 (discussion 63, 67)

    CAS  PubMed  Google Scholar 

  28. Turrisi AT, Glover DJ, Hurwitz S, Glick J, Norfleet AL, Weiler C, Yuhas JM, Kligerman MM (1986) Final report of the phase I trial of single-dose WR-2721 [S-2-(3-aminopropylamino)ethylphosphorothioic acid]. Cancer Treat Rep 70(12):1389–1393

    CAS  PubMed  Google Scholar 

  29. Delioukina ML, Prager D, Parson M, Hecht JR, Rosen P, Rosen LS (2002) Phase II trial of irinotecan in combination with amifostine in patients with advanced colorectal carcinoma. Cancer 94(8):2174–2179. doi:10.1002/cncr.10432

    Article  CAS  PubMed  Google Scholar 

  30. Gibson RJ, Keefe DM, Lalla RV, Bateman E, Blijlevens N, Fijlstra M, King EE, Stringer AM, van der Velden WJ, Yazbeck R, Elad S, Bowen JM, Mucositis Study Group of the Multinational Association of Supportive Care in Cancer/International Society of Oral O (2013) Systematic review of agents for the management of gastrointestinal mucositis in cancer patients. Support Care Cancer 21(1):313–326. doi:10.1007/s00520-012-1644-z

    Article  PubMed  Google Scholar 

  31. Thomson AB, Sadowski D, Jenkins R, Wild G (1997) Budesonide in the management of patients with Crohn’s disease. Can J Gastroenterol 11(3):255–260

    Article  CAS  PubMed  Google Scholar 

  32. Lenfers BH, Loeffler TM, Droege CM, Hausamen TU (1999) Substantial activity of budesonide in patients with irinotecan (CPT-11) and 5-fluorouracil induced diarrhea and failure of loperamide treatment. Ann Oncol 10(10):1251–1253

    Article  CAS  PubMed  Google Scholar 

  33. Karthaus M, Ballo H, Abenhardt W, Steinmetz T, Geer T, Schimke J, Braumann D, Behrens R, Behringer D, Kindler M, Messmann H, Boeck HP, Greinwald R, Kleeberg U (2005) Prospective, double-blind, placebo-controlled, multicenter, randomized phase III study with orally administered budesonide for prevention of irinotecan (CPT-11)-induced diarrhea in patients with advanced colorectal cancer. Oncology 68(4–6):326–332. doi:10.1159/000086971

    Article  CAS  PubMed  Google Scholar 

  34. Galijatovic A, Otake Y, Walle UK, Walle T (2001) Induction of UDP-glucuronosyltransferase UGT1A1 by the flavonoid chrysin in Caco-2 cells–potential role in carcinogen bioinactivation. Pharm Res 18(3):374–379

    Article  CAS  PubMed  Google Scholar 

  35. Tobin PJ, Beale P, Noney L, Liddell S, Rivory LP, Clarke S (2006) A pilot study on the safety of combining chrysin, a non-absorbable inducer of UGT1A1, and irinotecan (CPT-11) to treat metastatic colorectal cancer. Cancer Chemother Pharmacol 57(3):309–316. doi:10.1007/s00280-005-0053-0

    Article  CAS  PubMed  Google Scholar 

  36. Ferraldeschi R, Minchell LJ, Roberts SA, Tobi S, Hadfield KD, Blackhall FH, Mullamitha S, Wilson G, Valle J, Saunders M, Newman WG (2009) UGT1A1*28 genotype predicts gastrointestinal toxicity in patients treated with intermediate-dose irinotecan. Pharmacogenomics 10(5):733–739. doi:10.2217/pgs.09.20

    Article  CAS  PubMed  Google Scholar 

  37. Glimelius B, Garmo H, Berglund A, Fredriksson LA, Berglund M, Kohnke H, Bystrom P, Sorbye H, Wadelius M (2011) Prediction of irinotecan and 5-fluorouracil toxicity and response in patients with advanced colorectal cancer. Pharmacogenomics J 11(1):61–71. doi:10.1038/tpj.2010.10

    Article  CAS  PubMed  Google Scholar 

  38. Savarese DM, Savy G, Vahdat L, Wischmeyer PE, Corey B (2003) Prevention of chemotherapy and radiation toxicity with glutamine. Cancer Treat Rev 29(6):501–513

    Article  CAS  PubMed  Google Scholar 

  39. Ikegami T, Ha L, Arimori K, Latham P, Kobayashi K, Ceryak S, Matsuzaki Y, Bouscarel B (2002) Intestinal alkalization as a possible preventive mechanism in irinotecan (CPT-11)-induced diarrhea. Cancer Res 62(1):179–187

    CAS  PubMed  Google Scholar 

  40. Takeda Y, Kobayashi K, Akiyama Y, Soma T, Handa S, Kudoh S, Kudo K (2001) Prevention of irinotecan (CPT-11)-induced diarrhea by oral alkalization combined with control of defecation in cancer patients. Int J Cancer 92(2):269–275

    Article  CAS  PubMed  Google Scholar 

  41. Benjamin MA, McKay DM, Yang PC, Cameron H, Perdue MH (2000) Glucagon-like peptide-2 enhances intestinal epithelial barrier function of both transcellular and paracellular pathways in the mouse. Gut 47(1):112–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brubaker PL, Izzo A, Hill M, Drucker DJ (1997) Intestinal function in mice with small bowel growth induced by glucagon-like peptide-2. Am J Physiol 272(6 Pt 1):E1050–E1058

    CAS  PubMed  Google Scholar 

  43. Dhanvantari S, Seidah NG, Brubaker PL (1996) Role of prohormone convertases in the tissue-specific processing of proglucagon. Mol Endocrinol (Baltim Md) 10(4):342–355. doi:10.1210/mend.10.4.8721980

    CAS  Google Scholar 

  44. Rouille Y, Martin S, Steiner DF (1995) Differential processing of proglucagon by the subtilisin-like prohormone convertases PC2 and PC3 to generate either glucagon or glucagon-like peptide. J Biol Chem 270(44):26488–26496

    Article  CAS  PubMed  Google Scholar 

  45. Xiao Q, Boushey RP, Drucker DJ, Brubaker PL (1999) Secretion of the intestinotropic hormone glucagon-like peptide 2 is differentially regulated by nutrients in humans. Gastroenterology 117(1):99–105

    Article  CAS  PubMed  Google Scholar 

  46. Hartmann B, Johnsen AH, Orskov C, Adelhorst K, Thim L, Holst JJ (2000) Structure, measurement, and secretion of human glucagon-like peptide-2. Peptides 21(1):73–80

    Article  CAS  PubMed  Google Scholar 

  47. Anini Y, Brubaker PL (2003) Glucagon-like Peptides: GLP-1 and GLP-2. Encyclopedia of hormones. Elsevier Science, USA, pp 55–62

    Chapter  Google Scholar 

  48. Kato Y, Yu D, Schwartz MZ (1999) Glucagonlike peptide-2 enhances small intestinal absorptive function and mucosal mass in vivo. J Pediatr Surg 34(1):18–20 (discussion 20-11)

    Article  CAS  PubMed  Google Scholar 

  49. Meier JJ, Nauck MA, Pott A, Heinze K, Goetze O, Bulut K, Schmidt WE, Gallwitz B, Holst JJ (2006) Glucagon-like peptide 2 stimulates glucagon secretion, enhances lipid absorption, and inhibits gastric acid secretion in humans. Gastroenterology 130(1):44–54. doi:10.1053/j.gastro.2005.10.004

    Article  CAS  PubMed  Google Scholar 

  50. Wojdemann M, Wettergren A, Hartmann B, Holst JJ (1998) Glucagon-like peptide-2 inhibits centrally induced antral motility in pigs. Scand J Gastroenterol 33(8):828–832

    Article  CAS  PubMed  Google Scholar 

  51. Guan X, Karpen HE, Stephens J, Bukowski JT, Niu S, Zhang G, Stoll B, Finegold MJ, Holst JJ, Hadsell D, Nichols BL, Burrin DG (2006) GLP-2 receptor localizes to enteric neurons and endocrine cells expressing vasoactive peptides and mediates increased blood flow. Gastroenterology 130(1):150–164

    Article  CAS  PubMed  Google Scholar 

  52. Hartmann B, Thulesen J, Kissow H, Thulesen S, Orskov C, Ropke C, Poulsen SS, Holst JJ (2000) Dipeptidyl peptidase IV inhibition enhances the intestinotrophic effect of glucagon-like peptide-2 in rats and mice. Endocrinology 141(11):4013–4020

    CAS  PubMed  Google Scholar 

  53. Drucker DJ, Shi Q, Crivici A, Sumner-Smith M, Tavares W, Hill M, DeForest L, Cooper S, Brubaker PL (1997) Regulation of the biological activity of glucagon-like peptide 2 in vivo by dipeptidyl peptidase IV. Nat Biotechnol 15(7):673–677

    Article  CAS  PubMed  Google Scholar 

  54. Lovshin J, Drucker DJ (2000) Synthesis, secretion and biological actions of the glucagon-like peptides. Pediatr Diabetes 1(1):49–57

    Article  CAS  PubMed  Google Scholar 

  55. Boushey RP, Yusta B, Drucker DJ (2001) Glucagon-like peptide (GLP)-2 reduces chemotherapy-associated mortality and enhances cell survival in cells expressing a transfected GLP-2 receptor. Cancer Res 61(2):687–693

    CAS  PubMed  Google Scholar 

  56. L’Heureux MC, Brubaker PL (2003) Glucagon-like peptide-2 and common therapeutics in a murine model of ulcerative colitis. J Pharmacol Exp Ther 306(1):347–354

    Article  PubMed  CAS  Google Scholar 

  57. Sigalet DL, Martin GR (2000) Hormonal therapy for short bowel syndrome. J Pediatr Surg 35(2):360–363 (discussion 364)

    Article  CAS  PubMed  Google Scholar 

  58. Drucker DJ, Yusta B, Boushey RP, DeForest L, Brubaker PL (1999) Human [Gly2]GLP-2 reduces the severity of colonic injury in a murine model of experimental colitis. Am J Physiol 276(1 Pt 1):G79–G91

    CAS  PubMed  Google Scholar 

  59. Buchman AL, Katz S, Fang JC, Bernstein CN, Abou-Assi SG (2010) Teduglutide, a novel mucosally active analog of glucagon-like peptide-2 (GLP-2) for the treatment of moderate to severe Crohn’s disease. Inflamm Bowel Dis 16(6):962–973

    Article  PubMed  Google Scholar 

  60. Jeppesen PB (2012) Teduglutide, a novel glucagon-like peptide 2 analog, in the treatment of patients with short bowel syndrome. Therap Adv Gastroenterol 5(3):159–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Incorporated NP (2009) NPS Pharmaceuticals reports third quarter results and improved cash burn guidance. Business Wire, 4 November 2009

  62. Schwartz LK, O’Keefe SJ, Fujioka K, Gabe SM, Lamprecht G, Pape UF, Li B, Youssef NN, Jeppesen PB (2016) Long-term teduglutide for the treatment of patients with intestinal failure associated with short bowel syndrome. Clin Transl Gastroenterol 7:e142. doi:10.1038/ctg.2015.69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Alters SE, McLaughlin B, Spink B, Lachinyan T, Wang CW, Podust V, Schellenberger V, Stemmer WP (2012) GLP2-2G-XTEN: a pharmaceutical protein with improved serum half-life and efficacy in a rat Crohn’s disease model. PLoS One 7(11):e50630. doi:10.1371/journal.pone.0050630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kissow H, Hartmann B, Holst JJ, Poulsen SS (2012) Glucagon-like peptide-1 as a treatment for chemotherapy-induced mucositis. Gut

  65. Kissow H, Viby NE, Hartmann B, Holst JJ, Timm M, Thim L, Poulsen SS (2012) Exogenous glucagon-like peptide-2 (GLP-2) prevents chemotherapy-induced mucositis in rat small intestine. Cancer Chemother Pharmacol 70(1):39–48

    Article  CAS  PubMed  Google Scholar 

  66. Rasmussen AR, Viby NE, Hare KJ, Hartmann B, Thim L, Holst JJ, Poulsen SS (2010) The intestinotrophic peptide, GLP-2, counteracts the gastrointestinal atrophy in mice induced by the epidermal growth factor receptor inhibitor, erlotinib, and cisplatin. Dig Dis Sci 55(10):2785–2796

    Article  CAS  PubMed  Google Scholar 

  67. Booth C, Booth D, Williamson S, Demchyshyn LL, Potten CS (2004) Teduglutide ([Gly2]GLP-2) protects small intestinal stem cells from radiation damage. Cell Prolif 37(6):385–400

    Article  CAS  PubMed  Google Scholar 

  68. Torres S, Thim L, Milliat F, Vozenin-Brotons MC, Olsen UB, Ahnfelt-Ronne I, Bourhis J, Benderitter M, Francois A (2007) Glucagon-like peptide-2 improves both acute and late experimental radiation enteritis in the rat. Int J Radiat Oncol Biol Phys 69(5):1563–1571

    Article  CAS  PubMed  Google Scholar 

  69. Munroe DG, Gupta AK, Kooshesh F, Vyas TB, Rizkalla G, Wang H, Demchyshyn L, Yang ZJ, Kamboj RK, Chen H, McCallum K, Sumner-Smith M, Drucker DJ, Crivici A (1999) Prototypic G protein-coupled receptor for the intestinotrophic factor glucagon-like peptide 2. Proc Natl Acad Sci USA 96(4):1569–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yusta B, Huang L, Munroe D, Wolff G, Fantaske R, Sharma S, Demchyshyn L, Asa SL, Drucker DJ (2000) Enteroendocrine localization of GLP-2 receptor expression in humans and rodents. Gastroenterology 119(3):744–755

    Article  CAS  PubMed  Google Scholar 

  71. Orskov C, Hartmann B, Poulsen SS, Thulesen J, Hare KJ, Holst JJ (2005) GLP-2 stimulates colonic growth via KGF, released by subepithelial myofibroblasts with GLP-2 receptors. Regul Pept 124(1–3):105–112

    Article  CAS  PubMed  Google Scholar 

  72. Yusta B, Somwar R, Wang F, Munroe D, Grinstein S, Klip A, Drucker DJ (1999) Identification of glucagon-like peptide-2 (GLP-2)-activated signaling pathways in baby hamster kidney fibroblasts expressing the rat GLP-2 receptor. J Biol Chem 274(43):30459–30467

    Article  CAS  PubMed  Google Scholar 

  73. Sherwood NM, Krueckl SL, McRory JE (2000) The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev 21(6):619–670

    CAS  PubMed  Google Scholar 

  74. Burrin DG, Stoll B, Guan X, Cui L, Chang X, Hadsell D (2007) GLP-2 rapidly activates divergent intracellular signaling pathways involved in intestinal cell survival and proliferation in neonatal piglets. Am J Physiol 292(1):E281–E291

    CAS  Google Scholar 

  75. Nachmias B, Ashhab Y, Ben-Yehuda D (2004) The inhibitor of apoptosis protein family (IAPs): an emerging therapeutic target in cancer. Semin Cancer Biol 14(4):231–243

    Article  CAS  PubMed  Google Scholar 

  76. Sigalet DL, Wallace LE, Holst JJ, Martin GR, Kaji T, Tanaka H, Sharkey KA (2007) Enteric neural pathways mediate the anti-inflammatory actions of glucagon-like peptide 2. Am J Physiol Gastrointest Liver Physiol 293(1):G211–G221

    Article  CAS  PubMed  Google Scholar 

  77. DaCambra MP, Yusta B, Sumner-Smith M, Crivici A, Drucker DJ, Brubaker PL (2000) Structural determinants for activity of glucagon-like peptide-2. Biochemistry 39(30):8888–8894

    Article  CAS  PubMed  Google Scholar 

  78. Yusta B, Boushey RP, Drucker DJ (2000) The glucagon-like peptide-2 receptor mediates direct inhibition of cellular apoptosis via a cAMP-dependent protein kinase-independent pathway. J Biol Chem 275(45):35345–35352

    Article  CAS  PubMed  Google Scholar 

  79. Yusta B, Estall J, Drucker DJ (2002) Glucagon-like peptide-2 receptor activation engages bad and glycogen synthase kinase-3 in a protein kinase A-dependent manner and prevents apoptosis following inhibition of phosphatidylinositol 3-kinase. J Biol Chem 277(28):24896–24906

    Article  CAS  PubMed  Google Scholar 

  80. Koehler JA, Yusta B, Drucker DJ (2005) The HeLa cell glucagon-like peptide-2 receptor is coupled to regulation of apoptosis and ERK1/2 activation through divergent signaling pathways. Mol Endocrinol (Baltim Md) 19(2):459–473. doi:10.1210/me.2004-0196

    Article  CAS  Google Scholar 

  81. Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23(16):2838–2849. doi:10.1038/sj.onc.1207556

    Article  CAS  PubMed  Google Scholar 

  82. Arifa RD, Madeira MF, de Paula TP, Lima RL, Tavares LD, Menezes-Garcia Z, Fagundes CT, Rachid MA, Ryffel B, Zamboni DS, Teixeira MM, Souza DG (2014) Inflammasome activation is reactive oxygen species dependent and mediates irinotecan-induced mucositis through IL-1beta and IL-18 in mice. Am J Pathol 184(7):2023–2034. doi:10.1016/j.ajpath.2014.03.012

    Article  CAS  PubMed  Google Scholar 

  83. Bowen JM, Gibson RJ, Cummins AG, Tyskin A, Keefe DM (2007) Irinotecan changes gene expression in the small intestine of the rat with breast cancer. Cancer Chemother Pharmacol 59(3):337–348. doi:10.1007/s00280-006-0275-9

    Article  CAS  PubMed  Google Scholar 

  84. Miao EA, Rajan JV, Aderem A (2011) Caspase-1-induced pyroptotic cell death. Immunol Rev 243(1):206–214. doi:10.1111/j.1600-065X.2011.01044.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bowen JM, Gibson RJ, Keefe DM, Cummins AG (2005) Cytotoxic chemotherapy upregulates pro-apoptotic Bax and Bak in the small intestine of rats and humans. Pathology 37(1):56–62

    Article  CAS  PubMed  Google Scholar 

  86. Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, Adams JM, Huang DC (2005) Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19(11):1294–1305. doi:10.1101/gad.1304105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Horikawa Y, Otaka M, Komatsu K, Jin M, Odashima M, Wada I, Matsuhashi T, Ohba R, Oyake J, Hatakeyama N, Dubois RN, Watanabe S (2007) MEK activation suppresses CPT11-induced apoptosis in rat intestinal epithelial cells through a COX-2-dependent mechanism. Dig Dis Sci 52(10):2757–2765. doi:10.1007/s10620-007-9798-0

    Article  CAS  PubMed  Google Scholar 

  88. Wettschureck N, Offermanns S (2005) Mammalian G proteins and their cell type specific functions. Physiol Rev 85(4):1159–1204. doi:10.1152/physrev.00003.2005

    Article  CAS  PubMed  Google Scholar 

  89. Rowland KJ, Brubaker PL (2008) Life in the crypt: a role for glucagon-like peptide-2? Mol Cell Endocrinol 288(1–2):63–70

    Article  CAS  PubMed  Google Scholar 

  90. Dube PE, Forse CL, Bahrami J, Brubaker PL (2006) The essential role of insulin-like growth factor-1 in the intestinal tropic effects of glucagon-like peptide-2 in mice. Gastroenterology 131(2):589–605

    Article  CAS  PubMed  Google Scholar 

  91. Dong CX, Zhao W, Solomon C, Rowland KJ, Ackerley C, Robine S, Holzenberger M, Gonska T, Brubaker PL (2014) The intestinal epithelial insulin-like growth factor-1 receptor links glucagon-like peptide-2 action to gut barrier function. Endocrinology 155(2):370–379. doi:10.1210/en.2013-1871

    Article  PubMed  CAS  Google Scholar 

  92. Dube PE, Rowland KJ, Brubaker PL (2008) Glucagon-like peptide-2 activates beta-catenin signaling in the mouse intestinal crypt: role of insulin-like growth factor-I. Endocrinology 149(1):291–301

    Article  CAS  PubMed  Google Scholar 

  93. Estall JL, Koehler JA, Yusta B, Drucker DJ (2005) The glucagon-like peptide-2 receptor C terminus modulates beta-arrestin-2 association but is dispensable for ligand-induced desensitization, endocytosis, and G-protein-dependent effector activation. J Biol Chem 280(23):22124–22134

    Article  CAS  PubMed  Google Scholar 

  94. Bowen JM, Tsykin A, Stringer AM, Logan RM, Gibson RJ, Keefe DM (2010) Kinetics and regional specificity of irinotecan-induced gene expression in the gastrointestinal tract. Toxicology 269(1):1–12. doi:10.1016/j.tox.2009.12.020

    Article  CAS  PubMed  Google Scholar 

  95. Lam W, Bussom S, Guan F, Jiang Z, Zhang W, Gullen EA, Liu SH, Cheng YC (2010) The four-herb Chinese medicine PHY906 reduces chemotherapy-induced gastrointestinal toxicity. Sci Transl Med 2(45):45ra59. doi:10.1126/scitranslmed.3001270

    Article  PubMed  CAS  Google Scholar 

  96. Lee SJ, Lee J, Li KK, Holland D, Maughan H, Guttman DS, Yusta B, Drucker DJ (2012) Disruption of the murine Glp2r impairs Paneth cell function and increases susceptibility to small bowel enteritis. Endocrinology 153(3):1141–1151. doi:10.1210/en.2011-1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gibson RJ, Keefe DM, Clarke JM, Regester GO, Thompson FM, Goland GJ, Edwards BG, Cummins AG (2002) The effect of keratinocyte growth factor on tumour growth and small intestinal mucositis after chemotherapy in the rat with breast cancer. Cancer Chemother Pharmacol 50(1):53–58. doi:10.1007/s00280-002-0460-4

    Article  CAS  PubMed  Google Scholar 

  98. Nakao T, Kurita N, Komatsu M, Yoshikawa K, Iwata T, Utusnomiya T, Shimada M (2010) Irinotecan injures tight junction and causes bacterial translocation in rat. J Surg Res 173(2):341–347

    Article  PubMed  CAS  Google Scholar 

  99. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Neyrinck A, Lambert DM, Muccioli GG, Delzenne NM (2009) Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58(8):1091–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen Y, Lu Q, Schneeberger EE, Goodenough DA (2000) Restoration of tight junction structure and barrier function by down-regulation of the mitogen-activated protein kinase pathway in ras-transformed Madin-Darby canine kidney cells. Mol Biol Cell 11(3):849–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Stringer AM, Gibson RJ, Logan RM, Bowen JM, Yeoh AS, Laurence J, Keefe DM (2009) Irinotecan-induced mucositis is associated with changes in intestinal mucins. Cancer Chemother Pharmacol 64(1):123–132. doi:10.1007/s00280-008-0855-y

    Article  CAS  PubMed  Google Scholar 

  102. Cameron HL, Yang PC, Perdue MH (2003) Glucagon-like peptide-2-enhanced barrier function reduces pathophysiology in a model of food allergy. Am J Physiol Gastrointest Liver Physiol 284(6):G905–G912

    Article  CAS  PubMed  Google Scholar 

  103. Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC (2011) Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr 141(5):769–776

    Article  CAS  PubMed  Google Scholar 

  104. van Vliet MJ, Harmsen HJ, de Bont ES, Tissing WJ (2010) The role of intestinal microbiota in the development and severity of chemotherapy-induced mucositis. PLoS Pathog 6(5):e1000879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. de Heuvel E, Wallace L, Sharkey KA, Sigalet DL (2012) Glucagon-like peptide 2 induces vasoactive intestinal polypeptide expression in enteric neurons via phophatidylinositol 3-kinase-gamma signaling. Am J Physiol 303(8):E994–1005. doi:10.1152/ajpendo.00291.2012

    Google Scholar 

  106. Drucker DJ (2003) Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol Endocrinol (Baltim Md) 17(2):161–171

    Article  CAS  Google Scholar 

  107. Stringer AM, Gibson RJ, Bowen JM, Logan RM, Ashton K, Yeoh AS, Al-Dasooqi N, Keefe DM (2009) Irinotecan-induced mucositis manifesting as diarrhoea corresponds with an amended intestinal flora and mucin profile. Int J Exp Pathol 90(5):489–499. doi:10.1111/j.1365-2613.2009.00671.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lin XB, Dieleman LA, Ketabi A, Bibova I, Sawyer MB, Xue H, Field CJ, Baracos VE, Ganzle MG (2012) Irinotecan (CPT-11) chemotherapy alters intestinal microbiota in tumour bearing rats. PLoS One 7(7):e39764. doi:10.1371/journal.pone.0039764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fakiha KG (2015) A study linking toll-like receptors and irinotecan-induced gastrointestinal mucositis. The University of Adelaide, Adelaide

    Google Scholar 

  110. Wardill HR, Gibson RJ, Logan RM, Bowen JM (2014) Does TLR4/PKC signalling drive chemotherapy induced barrier dysfunction and mucositis? Paper presented at the Supportive Care in Cancer

  111. Hamada K, Kakigawa N, Sekine S, Shitara Y, Horie T (2013) Disruption of ZO-1/claudin-4 interaction in relation to inflammatory responses in methotrexate-induced intestinal mucositis. Cancer Chemother Pharmacol 72(4):757–765. doi:10.1007/s00280-013-2238-2

    Article  CAS  PubMed  Google Scholar 

  112. Kaczmarek A, Brinkman BM, Heyndrickx L, Vandenabeele P, Krysko DV (2012) Severity of doxorubicin-induced small intestinal mucositis is regulated by the TLR-2 and TLR-9 pathways. J Pathol 226(4):598–608

    Article  CAS  PubMed  Google Scholar 

  113. Wardill HR, Bowen JM, Al-Dasooqi N, Sultani M, Bateman E, Stansborough R, Shirren J, Gibson RJ (2014) Irinotecan disrupts tight junction proteins within the gut: implications for chemotherapy-induced gut toxicity. Cancer Biol Ther 15(2):236–244. doi:10.4161/cbt.27222

    Article  CAS  PubMed  Google Scholar 

  114. Lima-Junior RC, Figueiredo AA, Freitas HC, Melo ML, Wong DV, Leite CA, Medeiros RP, Marques-Neto RD, Vale ML, Brito GA, Oria RB, Souza MH, Cunha FQ, Ribeiro RA (2012) Involvement of nitric oxide on the pathogenesis of irinotecan-induced intestinal mucositis: role of cytokines on inducible nitric oxide synthase activation. Cancer Chemother Pharmacol 69(4):931–942. doi:10.1007/s00280-011-1780-z

    Article  CAS  PubMed  Google Scholar 

  115. Jeppesen PB, Sanguinetti EL, Buchman A, Howard L, Scolapio JS, Ziegler TR, Gregory J, Tappenden KA, Holst J, Mortensen PB (2005) Teduglutide (ALX-0600), a dipeptidyl peptidase IV resistant glucagon-like peptide 2 analogue, improves intestinal function in short bowel syndrome patients. Gut 54(9):1224–1231. doi:10.1136/gut.2004.061440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jeppesen PB, Gilroy R, Pertkiewicz M, Allard JP, Messing B, O’Keefe SJ (2011) Randomised placebo-controlled trial of teduglutide in reducing parenteral nutrition and/or intravenous fluid requirements in patients with short bowel syndrome. Gut 60(7):902–914. doi:10.1136/gut.2010.218271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Iakoubov R, Lauffer LM, Trivedi S, Kim YI, Brubaker PL (2009) Carcinogenic effects of exogenous and endogenous glucagon-like peptide-2 in azoxymethane-treated mice. Endocrinology 150(9):4033–4043. doi:10.1210/en.2009-0295

    Article  CAS  PubMed  Google Scholar 

  118. Thulesen J, Hartmann B, Hare KJ, Kissow H, Orskov C, Holst JJ, Poulsen SS (2004) Glucagon-like peptide 2 (GLP-2) accelerates the growth of colonic neoplasms in mice. Gut 53(8):1145–1150. doi:10.1136/gut.2003.035212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bengi G, Kayahan H, Akarsu M, Aysal A, Sagol O, Meral M, Akpinar H (2011) Does glucagon like peptide-2 receptor expression have any effect on the development of human colorectal cancer? Turk J Gastroenterol 22(4):388–394

    Article  PubMed  Google Scholar 

  120. Sinclair EM, Drucker DJ (2005) Proglucagon-derived peptides: mechanisms of action and therapeutic potential. Physiology 20:357–365. doi:10.1152/physiol.00030.2005

    Article  CAS  PubMed  Google Scholar 

  121. Tavakkolizadeh A, Shen R, Abraham P, Kormi N, Seifert P, Edelman ER, Jacobs DO, Zinner MJ, Ashley SW, Whang EE (2000) Glucagonlike peptide 2 (glp-2) promotes intestinal recovery following chemotherapy-induced enteritis. Curr Surg 57(5):502

    Article  CAS  PubMed  Google Scholar 

  122. Yamazaki K, Yasuda N, Inoue T, Nagakura T, Kira K, Saeki T, Tanaka I (2004) The combination of metformin and a dipeptidyl peptidase IV inhibitor prevents 5-fluorouracil-induced reduction of small intestine weight. Eur J Pharmacol 488(1–3):213–218

    Article  CAS  PubMed  Google Scholar 

  123. Arda-Pirincci P, Bolkent S (2011) The role of glucagon-like peptide-2 on apoptosis, cell proliferation, and oxidant-antioxidant system at a mouse model of intestinal injury induced by tumor necrosis factoralpha/ actinomycin D. Mol Cell Biochem 350(1–2):13–27

    Article  CAS  PubMed  Google Scholar 

  124. Hare KJ, Hartmann B, Kissow H, Holst JJ, Poulsen SS (2007) The intestinotrophic peptide, glp-2, counteracts intestinal atrophy in mice induced by the epidermal growth factor receptor inhibitor, gefitinib. Clin Cancer Res 13(17):5170–5175

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Bronwen Mayo was financially supported by a University of South Australia Postdoctoral Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bronwen J. Mayo.

Ethics declarations

Conflict of interest

Bronwen Mayo has received funding for research grants and partial remuneration from Helsinn Healthcare (Switzerland). Dorothy Keefe has received research grants from Pfizer, Entera Health and Helsinn Healthcare and has a consultant advisory role with Pfizer, Novartis, Helsinn Healthcare and Merck.

Ethical approval

All authors contributed to this work and consent to publication in this journal. This work has not been published elsewhere. No studies involving human participants or animals were performed by the authors as part of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayo, B.J., Stringer, A.M., Bowen, J.M. et al. Irinotecan-induced mucositis: the interactions and potential role of GLP-2 analogues. Cancer Chemother Pharmacol 79, 233–249 (2017). https://doi.org/10.1007/s00280-016-3165-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-016-3165-9

Keywords

Navigation