Skip to main content

Advertisement

Log in

Inhibition of sodium-independent and sodium-dependent nucleobase transport activities by tyrosine kinase inhibitors

  • Short Communication
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Effects of tyrosine kinase inhibitors (TKIs) on equilibrative nucleobase transport (ENBT) and sodium-dependent nucleobase transport (SNBT) activities were investigated in normal human renal proximal tubule epithelial cells (hRPTECs) and in pig kidney cell line (LLC-PK1).

Methods

Uptake assays were performed by assessing accumulation of radiolabeled nucleobases over time into hRPTECs or LLC-PK1 cell lines which express ENBT and SNBT activities, respectively. Dose–response curves for inhibition of 1 µM [3H]adenine or 1 µM [3H]hypoxanthine were examined in hRPTECs and in LLC-PK1 cells with varying TKI concentrations (0–100 µM) to calculate the IC50 values (mean ± S.E) for inhibition.

Results

Gefitinib inhibited ENBT activity with an IC50 value of 0.7 µM, thus indicating strong interactions of ENBT with gefitinib in hRPTECs. Erlotinib > sorafenib > imatinib > sunitinib inhibited ENBT with IC50 values of 15, 40, 60, 78 µM, respectively, whereas dasatinib, lapatinib, and vandetanib were not inhibitory at concentrations >100 µM. Similar studies in LLC-PK1 cells which exhibit SNBT activity showed that vandetanib was the most potent inhibitor followed by sorafenib > erlotinib > gefitinib > sunitinib > imatinib with IC50 values of 14, 25, 28, 40, 47, 94 µM, respectively, whereas dasatinib and lapatinib were not inhibitory at concentrations >100 µM.

Conclusions

These results suggest for the first time inhibition of both ENBT and SNBT transport activities by TKIs. These results suggest that it is important to consider potential effects on combination regimens using TKIs with nucleobase drugs such as 5-FU in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Abbreviations

NTs:

Nucleoside transporters

H:

Human

ENTs:

Equilibrative nucleoside transporters

CNTs:

Concentrative nucleoside transporters

VEGFR:

Vascular endothelial growth factor receptor

EGFR:

Epidermal growth factor receptor

ENBT:

Equilibrative nucleobase transport

SNBT:

Sodium-dependent nucleobase transport

IC50 :

Concentration of test compound that inhibited transport of nucleobase into cells by 50 % relative to control cells

TKIs:

Tyrosine kinase inhibitors

References

  1. Mi Y, Lou L (2007) ZD6474 reverses multidrug resistance by directly inhibiting the function of P-glycoprotein. Br J Cancer 97(7):934–940

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Damaraju VL, Kuzma M, Mowles D, Cass CE, Sawyer MB (2015) Interactions of multitargeted kinase inhibitors and nucleoside drugs: achilles heel of combination therapy? Mol Cancer Ther 14(1):236–245. doi:10.1158/1535-7163.MCT-14-0337

    Article  CAS  PubMed  Google Scholar 

  3. Damaraju VL, Scriver T, Mowles D, Kuzma M, Ryan A, Cass CE, Sawyer MB (2014) Erlotinib, gefitinib and vandetanib inhibit human nucleoside transporters and protect cancer cells from gemcitabine cytotoxicity. Clin Cancer Res. doi:10.1158/1078-0432.CCR-13-2293

    PubMed  Google Scholar 

  4. Huang M, Wang Y, Cogut SB, Mitchell BS, Graves LM (2003) Inhibition of nucleoside transport by protein kinase inhibitors. J Pharmacol Exp Ther 304(2):753–760. doi:10.1124/jpet.102.044214

    Article  CAS  PubMed  Google Scholar 

  5. Daniele G, Gallo M, Piccirillo MC, Giordano P, D’Alessio A, Del Giudice A, La Porta ML, Perrone F, Normanno N, De Luca A (2013) Pharmacokinetic evaluation of capecitabine in breast cancer. Expert Opin Drug Metab Toxicol 9(2):225–235. doi:10.1517/17425255.2013.759939

    Article  CAS  PubMed  Google Scholar 

  6. Jonasch E, Lal LS, Atkinson BJ, Byfield SD, Miller LA, Pagliaro LC, Feng C, Tannir NM (2011) Treatment of metastatic renal carcinoma patients with the combination of gemcitabine, capecitabine and bevacizumab at a tertiary cancer centre. BJU Int 107(5):741–747

    Article  PubMed  Google Scholar 

  7. Porta C, Paglino C (2011) Treatment of metastatic renal carcinoma patients with the combination of gemcitabine, capecitabine and bevacizumab at a tertiary cancer centre. BJU Int 107(5):747–748

    Article  PubMed  Google Scholar 

  8. Tsimafeyeu I, Demidov L, Kharkevich G, Petenko N, Galchenko V, Sinelnikov I, Naidzionak U (2012) Phase II, multicenter, uncontrolled trial of single-agent capecitabine in patients with non-clear cell metastatic renal cell carcinoma. Am J Clin Oncol 35:251–254

    Article  CAS  PubMed  Google Scholar 

  9. Young JD, Yao SY, Baldwin JM, Cass CE, Baldwin SA (2013) The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29. Mol Aspects Med 34(2–3):529–547. doi:10.1016/j.mam.2012.05.007

    Article  CAS  PubMed  Google Scholar 

  10. Griffith DA, Jarvis SM (1993) High affinity sodium-dependent nucleobase transport in cultured renal epithelial cells (LLC-PK1). J Biol Chem 268(27):20085–20090

    CAS  PubMed  Google Scholar 

  11. Griffith DA, Jarvis SM (1996) Nucleoside and nucleobase transport systems of mammalian cells. Biochim Biophys Acta 1286(3):153–181. doi:10.1016/S0304-4157(96)00008-1

    Article  CAS  PubMed  Google Scholar 

  12. Shayeghi M, Akerman R, Jarvis SM (1999) Nucleobase transport in opossum kidney epithelial cells and Xenopus laevis oocytes: the characterisation, structure-activity relationship of uracil analogues and oocyte expression studies of sodium-dependent and -independent hypoxanthine uptake. Biochim Biophys Acta 1416(1–2):109–118

    Article  CAS  PubMed  Google Scholar 

  13. Theisinger A, Grenacher B, Scharrer E (2003) Na + gradient-dependent transport of hypoxanthine by calf intestinal brush border membrane vesicles. J Comp Physiol B 173(2):165–170. doi:10.1007/s00360-002-0324-6

    CAS  PubMed  Google Scholar 

  14. Damaraju VL, Mowles D, Wilson M, Kuzma M, Cass CE, Sawyer MB (2013) Comparative in vitro evaluation of transportability and toxicity of capecitabine and its metabolites in cells derived from normal human kidney and renal cancers. Biochem Cell Biol 91(6):419–427. doi:10.1139/bcb-2013-0041

    Article  CAS  PubMed  Google Scholar 

  15. Carrato A, Swieboda-Sadlej A, Staszewska-Skurczynska M, Lim R, Roman L, Shparyk Y, Bondarenko I, Jonker DJ, Sun Y, De la Cruz JA, Williams JA, Korytowsky B, Christensen JG, Lin X, Tursi JM, Lechuga MJ, Van Cutsem E (2013) Fluorouracil, leucovorin, and irinotecan plus either sunitinib or placebo in metastatic colorectal cancer: a randomized, phase III trial. J Clin Oncol 31(10):1341–1347. doi:10.1200/JCO.2012.45.1930

    Article  CAS  PubMed  Google Scholar 

  16. McKillop D, Partridge EA, Kemp JV, Spence MP, Kendrew J, Barnett S, Wood PG, Giles PB, Patterson AB, Bichat F, Guilbaud N, Stephens TC (2005) Tumor penetration of gefitinib (Iressa), an epidermal growth factor receptor tyrosine kinase inhibitor. Mol Cancer Ther 4(4):641–649. doi:10.1158/1535-7163.MCT-04-0329

    Article  CAS  PubMed  Google Scholar 

  17. Haura EB, Sommers E, Song L, Chiappori A, Becker A (2010) A pilot study of preoperative gefitinib for early-stage lung cancer to assess intratumor drug concentration and pathways mediating primary resistance. J Thorac Oncol 5(11):1806–1814. doi:10.1097/JTO.0b013e3181f38f70

    Article  PubMed Central  PubMed  Google Scholar 

  18. Santoro A, Comandone A, Rimassa L, Granetti C, Lorusso V, Oliva C, Ronzoni M, Siena S, Zuradelli M, Mari E, Pressiani T, Carnaghi C (2008) A phase II randomized multicenter trial of gefitinib plus FOLFIRI and FOLFIRI alone in patients with metastatic colorectal cancer. Ann Oncol 19(11):1888–1893. doi:10.1093/annonc/mdn401

    Article  CAS  PubMed  Google Scholar 

  19. Jain L, Woo S, Gardner ER, Dahut WL, Kohn EC, Kummar S, Mould DR, Giaccone G, Yarchoan R, Venitz J, Figg WD (2011) Population pharmacokinetic analysis of sorafenib in patients with solid tumours. Br J Clin Pharmacol 72(2):294–305. doi:10.1111/j.1365-2125.2011.03963.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Tabernero J, Garcia-Carbonero R, Cassidy J, Sobrero A, Van Cutsem E, Kohne CH, Tejpar S, Gladkov O, Davidenko I, Salazar R, Vladimirova L, Cheporov S, Burdaeva O, Rivera F, Samuel L, Bulavina I, Potter V, Chang YL, Lokker NA, O’Dwyer PJ (2013) Sorafenib in combination with oxaliplatin, leucovorin, and fluorouracil (modified FOLFOX6) as first-line treatment of metastatic colorectal cancer: the RESPECT trial. Clin Cancer Res 19(9):2541–2550. doi:10.1158/1078-0432.CCR-13-0107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by a grant from Alberta Innovates health solutions to M.B.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Sawyer.

Ethics declarations

Conflict of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damaraju, V.L., Kuzma, M., Cass, C.E. et al. Inhibition of sodium-independent and sodium-dependent nucleobase transport activities by tyrosine kinase inhibitors. Cancer Chemother Pharmacol 76, 1093–1098 (2015). https://doi.org/10.1007/s00280-015-2859-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-015-2859-8

Keywords

Navigation