Skip to main content
Log in

The JAK2 46/1 haplotype (GGCC) in myeloproliferative neoplasms and splanchnic vein thrombosis: a pooled analysis of 26 observational studies

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Numbers of observational studies suggest that the JAK2 46/1 (GGCC) haplotype may increase the risk of myeloproliferative neoplasms (MPNs) and splanchnic vein thrombosis (SVT), but the results remain controversial. We aimed to examine the association between the JAK2 46/1 haplotype and risk of MPNs and SVT by conducting a meta-analysis. PubMed, EMBASE, Cochrane Library, CBM, and CNKI databases were searched to identify eligible studies without restrictions and by reviewing reference lists of obtained articles. Both fixed and random-effects models were used to calculate the summary risk estimates. We identified 26 observational studies of the JAK2 46/1 haplotype and risk of MPNs and SVT involving 8,561 cases and 7,434 participants. In the overall analysis, it was found that the JAK2 46/1 haplotype significantly elevated the risk of MPNs (rs10974944: C vs T: odds ratio (OR) = 2.19, 95 % confidence interval (CI) = 1.86–2.57, P < 0.0001; CC vs TT: OR = 4.63, 95 % CI = 3.32–6.47, P < 0.0001; CT vs TT: OR = 2.49, 95 % CI = 2.11–2.95, P < 0.0001; (CC + CT) vs TT: OR = 2.92, 95 % CI = 2.51–3.39, P < 0.0001; rs12343867: C vs T: OR = 1.88, 95 % CI = 1.59–2.22, P < 0.0001; CC vs TT: OR = 3.16, 95 %CI = 2.14–4.65, P < 0.0001; CT vs TT: OR = 2.04, 95 % CI = 1.51–2.74, P < 0.0001; (CC + CT) vs TT: OR = 2.25, 95 % CI = 1.73–2.95, P < 0.0001) and SVT (C vs T: OR = 1.27, 95 % CI = 1.06–1.52, P = 0.011; CC vs TT: OR = 2.33, 95 % CI = 1.42–3.81, P = 0.001; (CC + CT) vs TT: OR = 1.25, 95 % CI = 1.02–1.53, P = 0.034). There was no evidence of a significant association between the rs12343867 and the risk of SVT in the genetic model (CT vs TT: OR = 1.01, 95 % CI = 0.80–1.29, P = 0.906). This meta-analysis provides new evidence supporting the conclusion that the JAK2 46/1 haplotype enrichment is significantly associated with the development of MPNs and SVT in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. De Stefano V, Martinelli I (2010) Splanchnic vein thrombosis: clinical presentation, risk factors and treatment. Intern Emerg Med 5(6):487–494

    Article  PubMed  Google Scholar 

  2. Valla D, Casadevall N, Huisse MG et al (1988) Etiology of portal vein thrombosis in adults. A prospective evaluation of primary myeloproliferative disorders. Gastroenterology 94(4):1063–1069

    PubMed  CAS  Google Scholar 

  3. Rajani R, Melin T, Bjornsson E et al (2009) Budd-Chiari syndrome in Sweden: epidemiology, clinical characteristics and survival—an 18-year experience. Liver Int 29(2):253–259

    Article  PubMed  Google Scholar 

  4. Darwish Murad S, Valla DC, de Groen PC et al (2004) Determinants of survival and the effect of portosystemic shunting in patients with Budd-Chiari syndrome. Hepatology 39(2):500–508

    Article  PubMed  Google Scholar 

  5. Janssen HLA, Wijnhoud A, Haagsma EB et al (2001) Extrahepatic portal vein thrombosis: aetiology and determinants of survival. Gut 49:720–724

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Plessier A, Darwish-Murad S, Hernandez-Guerra M et al (2010) Acute portal vein thrombosis unrelated to cirrhosis: a prospective multicenter follow-up study. Hepatology 51(1):210–218

    Article  PubMed  Google Scholar 

  7. Baxter E, Scott LM, Campbell P et al (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365:1054–1061

    Article  PubMed  CAS  Google Scholar 

  8. James C, Ugo V, Couedic JL et al (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434:1144–1148

    Article  PubMed  CAS  Google Scholar 

  9. Smith CA, Fan G (2008) The saga of JAK2 mutations and translocations in hematologic disorders: pathogenesis, diagnostic and therapeutic prospects, and revised World Health Organization diagnostic criteria for myeloproliferative neoplasms. Hum Pathol 39(6):795–810

    Article  PubMed  CAS  Google Scholar 

  10. Qi X, Yang Z, Bai M, Shi X, Han G, Fan D (2011) Meta-analysis: the significance of screening for JAK2V617F mutation in Budd-Chiari syndrome and portal venous system thrombosis. Aliment Pharmacol Ther 33(10):1087–1103

    Article  PubMed  CAS  Google Scholar 

  11. Dentali F, Squizzato A, Brivio L et al (2009) JAK2V617F mutation for the early diagnosis of Ph myeloproliferative neoplasms in patients with venous thromboembolism a meta-analysis. Blood 113:5617–5623

    Article  PubMed  CAS  Google Scholar 

  12. Smalberg JH, Arends LR, Valla DC, Kiladjian J-J, Janssen HLA, Leebeek FWG (2012) Myeloproliferative neoplasms in Budd-Chiari syndrome and portal vein thrombosis: a meta-analysis. Blood 120(25):4921–4928

    Article  PubMed  CAS  Google Scholar 

  13. Tefferi A, Vardiman JW (2008) Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 22(1):14–22

    Article  PubMed  CAS  Google Scholar 

  14. Jones AV, Chase A, Silver RT et al (2009) JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet 41(4):446–449

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Kilpivaara O, Mukherjee S, Schram AM et al (2009) A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nat Genet 41(4):455–459

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Olcaydu D, Harutyunyan A, Jager R et al (2009) A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet 41(4):450–454

    Article  PubMed  CAS  Google Scholar 

  17. Jones AV, Campbell PJ, Beer PA et al (2010) The JAK2 46/1 haplotype predisposes to MPL-mutated myeloproliferative neoplasms. Blood 115(22):4517–4523

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Olcaydu D, Skoda RC, Looser R et al (2009) The ‘GGCC’ haplotype of JAK2 confers susceptibility to JAK2 exon 12 mutation-positive polycythemia vera. Leukemia 23(10):1924–1926

    Article  PubMed  CAS  Google Scholar 

  19. Patnaik M, Lasho T, Finke C, Gangat N (2010) MPL mutation effect on JAK2 46/1 haplotype frequency in JAK2V617F-negative myeloproliferative neoplasms. Leukemia 24:859–860

    Article  PubMed  CAS  Google Scholar 

  20. Colaizzo D, Tiscia GL, Bafunno V et al (2011) Sex modulation of the occurrence of jak2 v617f mutation in patients with splanchnic venous thrombosis. Thromb Res 128(3):233–236

    Article  PubMed  CAS  Google Scholar 

  21. Colaizzo D, Tiscia GL, Bafunno V et al (2010) The JAK2 rs12343867 CC genotype frequently occurs in patients with splanchnic venous thrombosis without the JAK2V617F mutation: a retrospective study. J Thromb Haemost 8:413–416

    Article  PubMed  CAS  Google Scholar 

  22. Wang H, Sun G, Zhang P, et al. (2013) JAK2 V617F mutation and 46/1 haplotype in Chinese Budd-Chiari syndrome patients. J Gastroenterol Hepatol 29(1):208--14

  23. Kouroupi E, Kiladjian JJ, Chomienne C et al (2011) The JAK2 46/1 haplotype in splanchnic vein thrombosis. Blood 117(21):5777–5778

    Article  PubMed  CAS  Google Scholar 

  24. Stroup DF, Berlin JA, Morton SC et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283(15):2008–2012

    Article  PubMed  CAS  Google Scholar 

  25. Woolf B (1955) On estimating the relation between blood group and disease. Ann Hum Genet 19:251–253

    Article  PubMed  CAS  Google Scholar 

  26. Petitti D (1994) Meta-analysis, decision analysis, and cost-effectiveness analysis. Oxford University Press, New York

    Google Scholar 

  27. Lau J, Ioannidis J, Schmid C (1997) Quantitative synthesis in systematic reviews. Ann Intern Med 127:820–826

    Article  PubMed  CAS  Google Scholar 

  28. Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Andrikovics H, Nahajevszky S, Koszarska M et al (2010) JAK2 46/1 haplotype analysis in myeloproliferative neoplasms and acute myeloid leukemia. Leukemia 24(10):1809–1813

    Article  PubMed  CAS  Google Scholar 

  30. Guglielmelli P, Biamonte F, Spolverini A et al (2010) Frequency and clinical correlates of JAK2 46/1 (GGCC) haplotype in primary myelofibrosis. Leukemia 24(8):1533–1537

    Article  PubMed  CAS  Google Scholar 

  31. Trifa AP, Cucuianu A, Petrov L et al (2010) The G allele of the JAK2 rs10974944 SNP, part of JAK2 46/1 haplotype, is strongly associated with JAK2 V617F-positive myeloproliferative neoplasms. Ann Hematol 89(10):979–983

    Article  PubMed  CAS  Google Scholar 

  32. Tefferi A, Lasho TL, Patnaik MM et al (2010) JAK2 germline genetic variation affects disease susceptibility in primary myelofibrosis regardless of V617F mutational status: nullizygosity for the JAK2 46/1 haplotype is associated with inferior survival. Leukemia 24(1):105–109

    Article  PubMed  CAS  Google Scholar 

  33. Pardanani A, Lasho TL, Finke CM et al (2010) The JAK2 46/1 haplotype confers susceptibility to essential thrombocythemia regardless of JAK2V617F mutational status—clinical correlates in a study of 226 consecutive patients. Leukemia 24(1):110–114

    Article  PubMed  CAS  Google Scholar 

  34. Rajani R (2011) Hepatic and portal vein thrombosis—studies on epidemiology and risk factors. Linköping University Medical Dissertations, Sweden, No. 1241, 1–59

  35. Olcaydu D, Rumi E, Harutyunyan A et al (2011) The role of the JAK2 GGCC haplotype and the TET2 gene in familial myeloproliferative neoplasms. Haematologica 96(3):367–374

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Rumi E, Passamonti F, Elena C et al (2011) Increased risk of lymphoid neoplasm in patients with myeloproliferative neoplasm: a study of 1,915 patients. Haematologica 96(3):454–458

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hsiao HH, Liu YC, Tsai HJ, Lee CP, Hsu JF, Lin SF (2011) JAK2V617F mutation is associated with special alleles in essential thrombocythemia. Leuk Lymphoma 52(3):478–482

    Article  PubMed  CAS  Google Scholar 

  38. Smalberg JH, Koehler E, Murad SD et al (2011) The JAK2 46/1 haplotype in Budd-Chiari syndrome and portal vein thrombosis. Blood 117:3968–3973

    Article  PubMed  CAS  Google Scholar 

  39. Qin TZ, Ping Z, Xing LH et al (2012) Relationship between V617F mutation and 46/1 haplotype in JAK2 gene in patients with chronic myeloproliferative diseases and frequencies of 46/1 haplotype in different Chinese nationalities. J Exp Hematol 20(2):362–367

    Google Scholar 

  40. Westbrook RH, Lea NC, Mohamedali AM et al (2012) Prevalence and clinical outcomes of the 46/1 haplotype, Janus kinase 2 mutations, and ten-eleven translocation 2 mutations in Budd-Chiari syndrome and their impact on thrombotic complications post liver transplantation. Liver Transpl 18(7):819–827

    Article  PubMed  Google Scholar 

  41. Zhang X, Hu T, Wu Z, Kang Z, Liu W, Guan M (2012) The JAK2 46/1 haplotype is a risk factor for myeloproliferative neoplasms in Chinese patients. Int J Hematol 96(5):611–616

    Article  PubMed  Google Scholar 

  42. Villani L, Bergamaschi G, Primignani M et al (2012) JAK2 46/1 haplotype predisposes to splanchnic vein thrombosis-associated BCR-ABL negative classic myeloproliferative neoplasms. Leuk Res 36(1):e7–e9

    Article  PubMed  Google Scholar 

  43. Pietra D, Casetti I, Via MCD, Elena C, Milanes C, Rumi E (2012) JAK2 GGCC haplotype in MPL mutated myeloproliferative neoplasms. Am J Hematol 87(7):746–747

    Article  PubMed  CAS  Google Scholar 

  44. Pagliarinie Silva S, Santos BC, Pereira EM et al (2013) Evaluation of the association between the JAK2 46/1 haplotype and chronic myeloproliferative neoplasms in a Brazilian population. Clinics (Sao Paulo) 68(1):5–9

    Article  Google Scholar 

  45. Tanaka M, Yujiri T, Ito S et al (2013) JAK2 46/1 haplotype is associated with JAK2 V617F-positive myeloproliferative neoplasms in Japanese patients. Int J Hematol 97(3):409–413

    Article  PubMed  CAS  Google Scholar 

  46. Wang J, Xu Z, Liu L et al (2013) JAK2V617F allele burden, JAK2 46/1 haplotype and clinical features of Chinese with myeloproliferative neoplasms. Leukemia 27(8):1763–1767

    Article  PubMed  CAS  Google Scholar 

  47. Hermouet S, Vilaine M (2011) The JAK2 46/1 haplotype: a marker of inappropriate myelomonocytic response to cytokine stimulation, leading to increased risk of inflammation, myeloid neoplasm, and impaired defense against infection? Haematologica 96(11):1575–1579

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Ohyashiki JH, Yoneta M, Hisatomi H, Iwabuchi T, Umezu T, Ohyashiki K (2012) The C allele of JAK2 rs4495487 is an additional candidate locus that contributes to myeloproliferative neoplasm predisposition in the Japanese population. BMC Med Genet 13:6

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Smith AE, Mohamedali AM, Kulasekararaj A et al (2010) Next-generation sequencing of the TET2 gene in 355 MDS and CMML patients reveals low-abundance mutant clones with early origins, but indicates no definite prognostic value. Blood 116(19):3923–3932

    Article  PubMed  CAS  Google Scholar 

  50. Spolverini A, Jones AV, Hochhaus A, Pieri L, Cross NC, Vannucchi AM (2011) The myeloproliferative neoplasm-associated JAK2 46/1 haplotype is not overrepresented in chronic myelogenous leukemia. Ann Hematol 90(3):365–366

    Article  PubMed  Google Scholar 

  51. Trifa AP, Crisan S, Popp RA, Cucuianu A, Buzoianu AD (2010) JAK2 46/1 haplotype seems not to be associated with lower limb deep venous thrombosis. Blood Cells Mol Dis 45(3):199–200

    Article  PubMed  CAS  Google Scholar 

  52. Alvarez-Larran A, Angona A, Martinez-Aviles L, Bellosillo B, Besses C (2012) Influence of JAK2 46/1 haplotype in the natural evolution of JAK2V617F allele burden in patients with myeloproliferative neoplasms. Leuk Res 36(3):324–326

    Article  PubMed  CAS  Google Scholar 

  53. Wang J, Ai X, Xu J et al (2012) JAK2 exon 12 mutations in patients with Philadelphia (Ph) chromosome-negative myeloproliferative neoplasms. Chin J Hematol 33(9):705–709

    Google Scholar 

  54. Landgren O, Goldin LR, Kristinsson SY, Helgadottir EA, Samuelsson J, Bjorkholm M (2008) Increased risks of polycythemia vera, essential thrombocythemia, and myelofibrosis among 24,577 first-degree relatives of 11,039 patients with myeloproliferative neoplasms in Sweden. Blood 112(6):2199–2204

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Martinez-Aviles L, Besses C, Alvarez-Larran A, Torres E, Serrano S, Bellosillo B (2012) TET2, ASXL1, IDH1, IDH2, and c-CBL genes in JAK2- and MPL-negative myeloproliferative neoplasms. Ann Hematol 91(4):533–541

    Article  PubMed  CAS  Google Scholar 

  56. Nahajevszky S, Andrikovics H, Batai A et al (2011) The prognostic impact of germline 46/1 haplotype of Janus kinase 2 in cytogenetically normal acute myeloid leukemia. Haematologica 96(11):1613–1618

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Tefferi A, Lasho TL, Abdel-Wahab O et al (2010) IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic- or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis. Leukemia 24(7):1302–1309

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Campbell PJ (2009) Somatic and germline genetics at the JAK2 locus. Nat Genet 41:385–386

    Article  PubMed  CAS  Google Scholar 

  59. Higgins J, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the National Natural Science Foundation of China (no. 81172604). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. All authors critically reviewed the manuscript for important intellectual content and approved the final manuscript.

Conflict of interest

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-jun Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 40 kb)

ESM 2

(DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Sl., Zhang, Pj., Sun, Gx. et al. The JAK2 46/1 haplotype (GGCC) in myeloproliferative neoplasms and splanchnic vein thrombosis: a pooled analysis of 26 observational studies. Ann Hematol 93, 1845–1852 (2014). https://doi.org/10.1007/s00277-014-2134-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-014-2134-9

Keywords

Navigation