Skip to main content

Advertisement

Log in

Effect of blood glucose level on standardized uptake value (SUV) in 18F- FDG PET-scan: a systematic review and meta-analysis of 20,807 individual SUV measurements

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the effect of pre-scan blood glucose levels (BGL) on standardized uptake value (SUV) in 18F-FDG-PET scan.

Methods

A literature review was performed in the MEDLINE, Embase, and Cochrane library databases. Multivariate regression analysis was performed on individual datum to investigate the correlation of BGL with SUVmax and SUVmean adjusting for sex, age, body mass index (BMI), diabetes mellitus diagnosis, 18F-FDG injected dose, and time interval. The ANOVA test was done to evaluate differences in SUVmax or SUVmean among five different BGL groups (< 110, 110–125, 125–150, 150–200, and > 200 mg/dl).

Results

Individual data for a total of 20,807 SUVmax and SUVmean measurements from 29 studies with 8380 patients was included in the analysis. Increased BGL is significantly correlated with decreased SUVmax and SUVmean in brain (p < 0.001, p < 0.001,) and muscle (p < 0.001, p < 0.001) and increased SUVmax and SUVmean in liver (p = 0.001, p = 0004) and blood pool (p = 0.008, p < 0.001). No significant correlation was found between BGL and SUVmax or SUVmean in tumors. In the ANOVA test, all hyperglycemic groups had significantly lower SUVs compared with the euglycemic group in brain and muscle, and significantly higher SUVs in liver and blood pool. However, in tumors only the hyperglycemic group with BGL of > 200 mg/dl had significantly lower SUVmax.

Conclusion

If BGL is lower than 200 mg/dl no interventions are needed for lowering BGL, unless the liver is the organ of interest. Future studies are needed to evaluate sensitivity and specificity of FDG-PET scan in diagnosis of malignant lesions in hyperglycemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FDG-PET:

Fluorodeoxyglucose positron emission tomography

GLUT:

Glucose transport protein

FDG-6-P:

F-FDG-6- phosphate

glucose-6-P:

Glucose-6- phosphate

SNMMI:

Society of Nuclear Medicine and Molecular Imaging

EANM:

European Association of Nuclear Medicine

mg/dl:

Milligram per deciliter

mmol/l:

Millimole per liter

SUV:

Standardized uptake values

SD:

Standard deviation

FBS:

Fasting blood sugar

BMI:

Body mass index

PET/CT:

Positron emission tomography / computed tomography

MD:

Mean difference

CI95%:

Confidence interval 95%

RBC:

Red blood cell

References

  1. Moghbel M, Newberg A, Alavi A. Positron emission tomography: ligand imaging. Handb Clin Neurol. 2016;135:229–40.

    Article  PubMed  Google Scholar 

  2. Basu S, Alavi A. PET-based personalized management in clinical oncology: an unavoidable path for the foreseeable future. PET Clin. 2016;11(3):203–7.

    Article  PubMed  Google Scholar 

  3. Hustinx R, Benard F, Alavi A. Whole-body FDG-PET imaging in the management of patients with cancer. Semin Nucl Med. 2002;32(1):35–46.

    Article  PubMed  Google Scholar 

  4. von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and future directions. Radiology. 2006;238(2):405–22.

    Article  Google Scholar 

  5. Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology. 2004;231(2):305–32.

    Article  PubMed  Google Scholar 

  6. Hess S, et al. The pivotal role of FDG-PET/CT in modern medicine. Acad Radiol. 2014;21(2):232–49.

    Article  PubMed  Google Scholar 

  7. Sprinz C, et al. Effects of blood glucose level on 18F-FDG uptake for PET/CT in normal organs: a systematic review. PLoS One. 2018;13(2):e0193140.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Volpi S, et al. The role of positron emission tomography in the diagnosis, staging and response assessment of non-small cell lung cancer. Ann Transl Med. 2018;6(5):95.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Heiss WD. Positron emission tomography imaging in gliomas: applications in clinical diagnosis, for assessment of prognosis and of treatment effects, and for detection of recurrences. Eur J Neurol. 2017;24(10):1255–e70.

    Article  PubMed  Google Scholar 

  10. Rohde M, et al. 18F-fluoro-deoxy-glucose-positron emission tomography/computed tomography in diagnosis of head and neck squamous cell carcinoma: a systematic review and meta-analysis. Eur J Cancer. 2014;50(13):2271–9.

    Article  PubMed  Google Scholar 

  11. Wu CX, Zhu ZH. Diagnosis and evaluation of gastric cancer by positron emission tomography. World J Gastroenterol. 2014;20(16):4574–85.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fischer BM, Mortensen J. The future in diagnosis and staging of lung cancer: positron emission tomography. Respiration. 2006;73(3):267–76.

    Article  PubMed  Google Scholar 

  13. Bastiaannet E, et al. The value of FDG-PET in the detection, grading and response to therapy of soft tissue and bone sarcomas; a systematic review and meta-analysis. Cancer Treat Rev. 2004;30(1):83–101.

    Article  CAS  PubMed  Google Scholar 

  14. Vansteenkiste J, et al. Positron-emission tomography in prognostic and therapeutic assessment of lung cancer: systematic review. Lancet Oncol. 2004;5(9):531–40.

    Article  PubMed  Google Scholar 

  15. Capirci C, et al. Long-term prognostic value of 18F-FDG PET in patients with locally advanced rectal cancer previously treated with neoadjuvant radiochemotherapy. AJR Am J Roentgenol. 2006;187(2):W202–8.

    Article  PubMed  Google Scholar 

  16. Challapalli A, Aboagye EO. Positron emission tomography imaging of tumor cell metabolism and application to therapy response monitoring. Front Oncol. 2016;6:44.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gambhir SS, et al. A tabulated summary of the FDG PET literature. J Nucl Med. 2001;42(5 Suppl):1s–93s.

    CAS  PubMed  Google Scholar 

  18. Weber G. Enzymology of cancer cells (first of two parts). N Engl J Med. 1977;296(9):486–92.

    Article  CAS  PubMed  Google Scholar 

  19. Hiraki Y, Rosen OM, Birnbaum MJ. Growth factors rapidly induce expression of the glucose transporter gene. J Biol Chem. 1988;263(27):13655–62.

    Article  CAS  PubMed  Google Scholar 

  20. Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 2008;8(9):705–13.

    Article  CAS  PubMed  Google Scholar 

  21. Shaw RJ. Glucose metabolism and cancer. Curr Opin Cell Biol. 2006;18(6):598–608.

    Article  CAS  PubMed  Google Scholar 

  22. Wood IS, Trayhurn P. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr. 2003;89(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  23. Younes M, et al. Wide expression of the human erythrocyte glucose transporter Glut1 in human cancers. Cancer Res. 1996;56(5):1164–7.

    CAS  PubMed  Google Scholar 

  24. Pauwels EK, et al. The mechanism of accumulation of tumour-localising radiopharmaceuticals. Eur J Nucl Med. 1998;25(3):277–305.

    Article  CAS  PubMed  Google Scholar 

  25. Khan N, et al. 18F-fluorodeoxyglucose uptake in tumor. Mymensingh Med J. 2011;20(2):332–42.

    CAS  PubMed  Google Scholar 

  26. Kumar R, et al. Positron emission tomography imaging in evaluation of cancer patients. Indian J Cancer. 2003;40(3):87–100.

    CAS  PubMed  Google Scholar 

  27. Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005;202(3):654–62.

    Article  CAS  PubMed  Google Scholar 

  28. Brown RS, Wahl RL. Overexpression of Glut-1 glucose transporter in human breast cancer. An immunohistochemical study. Cancer. 1993;72(10):2979–85.

    Article  CAS  PubMed  Google Scholar 

  29. Medina RA, Owen GI. Glucose transporters: expression, regulation and cancer. Biol Res. 2002;35(1):9–26.

    Article  CAS  PubMed  Google Scholar 

  30. Ishiki M, Klip A. Minireview: recent developments in the regulation of glucose transporter-4 traffic: new signals, locations, and partners. Endocrinology. 2005;146(12):5071–8.

    Article  CAS  PubMed  Google Scholar 

  31. Gould GW, Holman GD. The glucose transporter family: structure, function and tissue-specific expression. Biochem J. 1993;295(Pt 2):329–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Niccoli-Asabella A, et al. 18F-FDGPET/CT: diabetes and hyperglycaemia. Nucl Med Rev Cent East Eur. 2013;16(2):57–61.

    Article  PubMed  Google Scholar 

  33. Cho NH, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81.

    Article  CAS  PubMed  Google Scholar 

  34. Clement S, et al. Management of diabetes and hyperglycemia in hospitals. Diabetes Care. 2004;27(2):553–91.

    Article  PubMed  Google Scholar 

  35. Bonaventura A, Montecucco F. Steroid-induced hyperglycemia: an underdiagnosed problem or clinical inertia? A narrative review. Diabetes Res Clin Pract. 2018;139:203–20.

    Article  CAS  PubMed  Google Scholar 

  36. Beyan C, et al. Severe hyperglycemia as a complication of big ICE chemotherapy in a patient with acute myeloblastic leukemia. Haematologia (Budap). 2002;32(4):505–8.

    Google Scholar 

  37. Walker ED. Hyperglycemia. A complication of chemotherapy in children. Cancer Nurs. 1988;11(1):18–22.

    Article  CAS  PubMed  Google Scholar 

  38. Carrasco-Sanchez FJ, et al. Stress-induced hyperglycemia on complications in non-critically elderly hospitalized patients. Rev Clin Esp. 2018;218(5):223–31.

  39. Delbeke D, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med. 2006;47(5):885–95.

    PubMed  Google Scholar 

  40. Boellaard R, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.

    Article  CAS  PubMed  Google Scholar 

  41. Beyer T, Czernin J, Freudenberg LS. Variations in clinical PET/CT operations: results of an international survey of active PET/CT users. J Nucl Med. 2011;52(2):303–10.

    Article  PubMed  Google Scholar 

  42. Zhao S, et al. Effects of insulin and glucose loading on FDG uptake in experimental malignant tumours and inflammatory lesions. Eur J Nucl Med. 2001;28(6):730–5.

    Article  CAS  PubMed  Google Scholar 

  43. Cerfolio RJ, et al. The maximum standardized uptake values on positron emission tomography of a non-small cell lung cancer predict stage, recurrence, and survival. J Thorac Cardiovasc Surg. 2005;130(1):151–9.

    Article  PubMed  Google Scholar 

  44. Weber WA, Schwaiger M, Avril N. Quantitative assessment of tumor metabolism using FDG-PET imaging. Nucl Med Biol. 2000;27(7):683–7.

    Article  CAS  PubMed  Google Scholar 

  45. Westerterp M, et al. Quantification of FDG PET studies using standardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters. Eur J Nucl Med Mol Imaging. 2007;34(3):392–404.

    Article  PubMed  Google Scholar 

  46. Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from: www.handbook.cochrane.org.

  47. Liberati A, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wells G, Shea B, O'Connell D, Peterson JE, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa, Ottawa Hospital Research Institute; 2000

    Google Scholar 

  49. World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia. Geneva, World Health Organisation; 2006.

    Google Scholar 

  50. Viglianti BL. Plasma glucose effect upon regional brain FDG uptake: implications for semi-quantitative image analysis and dementia classification[abstract]. In: 103rd RSNA Scientific Assembly and Annual Meeting; 2017 November 1, Chicago, SSE16-04. 2017.

  51. Caobelli F, et al. Proposal for an optimized protocol for intravenous administration of insulin in diabetic patients undergoing (18)F-FDG PET/CT. Nucl Med Commun. 2013;34(3):271–5.

    Article  CAS  PubMed  Google Scholar 

  52. Lococo F, et al. 18F-fluorodeoxyglucose positron emission tomographic scan in solid-type p-stage-I pulmonary adenocarcinomas: what can produce false-negative results? Eur J Cardiothorac Surg. 2017;51(4):667–73.

    PubMed  Google Scholar 

  53. Werner RA, et al. Predictive value of FDG-PET in patients with advanced medullary thyroid carcinoma treated with vandetanib. J Nucl Med. 2017;59(5):756–61.

    Article  PubMed  CAS  Google Scholar 

  54. Garcia JR, et al. Influence of subcutaneous administration of rapid-acting insulin in the quality of (18)F-FDG PET/CT studies. Nucl Med Commun. 2014;35(5):459–65.

    Article  CAS  PubMed  Google Scholar 

  55. Cheung MK, et al. False positive positron emission tomography / computed tomography scans in treated head and neck cancers. Cureus. 2017;9(4):e1146.

    PubMed  PubMed Central  Google Scholar 

  56. Lindholm H, et al. The relation between the blood glucose level and the FDG uptake of tissues at normal PET examinations. EJNMMI Res. 2013;3(1):50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Schildt J, et al. Seasonal temperature changes do not affect cardiac glucose metabolism. Int J Mol Imaging. 2015;2015:916016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Iwano S, et al. What causes false-negative PET findings for solid-type lung cancer? Lung Cancer. 2013;79(2):132–6.

    Article  PubMed  Google Scholar 

  59. Boktor RR, et al. Reference range for intrapatient variability in blood-pool and liver SUV for 18F-FDG PET. J Nucl Med. 2013;54(5):677–82.

    Article  CAS  PubMed  Google Scholar 

  60. Keramida G, et al. Quantification of tumour (18) F-FDG uptake: normalise to blood glucose or scale to liver uptake? Eur Radiol. 2015;25(9):2701–8.

    Article  PubMed  Google Scholar 

  61. Tatci E, et al. The correlation between pre-treatment fluorodeoxyglucose positron emission tomography/computed tomography parameters and clinical prognostic factors in pediatric Hodgkin lymphoma. Mol Imaging Radionucl Ther. 2017;26(1):9–16.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sancho-Munoz A, et al. Muscle glucose metabolism in chronic obstructive pulmonary disease patients. Arch Bronconeumol. 2014;50(6):221–7.

    Article  PubMed  Google Scholar 

  63. Viglianti BL, et al. Effect of hyperglycemia on brain and liver (18)F-FDG standardized uptake value (FDG SUV) measured by quantitative positron emission tomography (PET) imaging. Biomed Pharmacother. 2017;88:1038–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bybel B, et al. Increased F-18 FDG intestinal uptake in diabetic patients on metformin: a matched case-control analysis. Clin Nucl Med. 2011;36(6):452–6.

    Article  PubMed  Google Scholar 

  65. Barwick TD, et al. 18F-FDG PET-CT uptake is a feature of both normal diameter and aneurysmal aortic wall and is not related to aneurysm size. Eur J Nucl Med Mol Imaging. 2014;41(12):2310–8.

    Article  CAS  PubMed  Google Scholar 

  66. Sprinz C, et al. Effects of blood glucose level on 18F fluorodeoxyglucose (18F-FDG) uptake for PET/CT in normal organs: an analysis on 5623 patients. Sci Rep. 2018;8(1):2126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Rubello D, et al. Variability of hepatic 18F-FDG uptake at interim PET in patients with Hodgkin lymphoma. Clin Nucl Med. 2015;40(8):e405–10.

    Article  PubMed  Google Scholar 

  68. Mirpour S, Meteesatien P, Khandani AH. Does hyperglycemia affect the diagnostic value of 18F-FDG PET/CT? Rev Esp Med Nucl Imagen Mol. 2012;31(2):71–7.

    CAS  PubMed  Google Scholar 

  69. Harisankar CN, et al. Utility of high fat and low carbohydrate diet in suppressing myocardial FDG uptake. J Nucl Cardiol. 2011;18(5):926–36.

    Article  PubMed  Google Scholar 

  70. Huang B, et al. Dynamic PET-CT studies for characterizing nasopharyngeal carcinoma metabolism: comparison of analytical methods. Nucl Med Commun. 2012;33(2):191–7.

    Article  CAS  PubMed  Google Scholar 

  71. Janssen MH, et al. Blood glucose level normalization and accurate timing improves the accuracy of PET-based treatment response predictions in rectal cancer. Radiother Oncol. 2010;95(2):203–8.

    Article  CAS  PubMed  Google Scholar 

  72. Hara T, et al. Significance of chronic marked hyperglycemia on FDG-PET: is it really problematic for clinical oncologic imaging? Ann Nucl Med. 2009;23(7):657–69.

    Article  PubMed  Google Scholar 

  73. Nakamoto Y, et al. Reproducibility of common semi-quantitative parameters for evaluating lung cancer glucose metabolism with positron emission tomography using 2-deoxy-2-[18F]fluoro-D-glucose. Mol Imaging Biol. 2002;4(2):171–8.

    Article  PubMed  Google Scholar 

  74. Koyama K, et al. Diagnostic usefulness of FDG PET for pancreatic mass lesions. Ann Nucl Med. 2001;15(3):217–24.

    Article  CAS  PubMed  Google Scholar 

  75. Minn H, et al. Lung cancer: reproducibility of quantitative measurements for evaluating 2-[F-18]-fluoro-2-deoxy-D-glucose uptake at PET. Radiology. 1995;196(1):167–73.

    Article  CAS  PubMed  Google Scholar 

  76. Minn H, et al. [18F]fluorodeoxyglucose uptake in tumors: kinetic vs. steady-state methods with reference to plasma insulin. J Comput Assist Tomogr. 1993;17(1):115–23.

    Article  CAS  PubMed  Google Scholar 

  77. Ishizu K, et al. Effects of hyperglycemia on FDG uptake in human brain and glioma. J Nucl Med. 1994;35(7):1104–9.

    CAS  PubMed  Google Scholar 

  78. Lindholm P, et al. Influence of the blood glucose concentration on FDG uptake in cancer--a PET study. J Nucl Med. 1993;34(1):1–6.

    CAS  PubMed  Google Scholar 

  79. Guerin C, et al. The glucose transporter and blood-brain barrier of human brain tumors. Ann Neurol. 1990;28(6):758–65.

    Article  CAS  PubMed  Google Scholar 

  80. Reske SN, et al. Overexpression of glucose transporter 1 and increased FDG uptake in pancreatic carcinoma. J Nucl Med. 1997;38(9):1344–8.

    CAS  PubMed  Google Scholar 

  81. Kato H, et al. Glut-1 glucose transporter expression in esophageal squamous cell carcinoma is associated with tumor aggressiveness. Anticancer Res. 2002;22(5):2635–9.

    CAS  PubMed  Google Scholar 

  82. Yang J, et al. GLUT-1 overexpression as an unfavorable prognostic biomarker in patients with colorectal cancer. Oncotarget. 2017;8(7):11788–96.

    Article  PubMed  Google Scholar 

  83. Viglianti BL, et al. Effects of tumor burden on reference tissue standardized uptake for PET imaging: modification of PERCIST criteria. Radiology. 2018;287(3):993–1002.

    Article  PubMed  Google Scholar 

  84. Yamamoto T, et al. Over-expression of facilitative glucose transporter genes in human cancer. Biochem Biophys Res Commun. 1990;170(1):223–30.

    Article  CAS  PubMed  Google Scholar 

  85. Arora KK, Pedersen PL. Functional significance of mitochondrial bound hexokinase in tumor cell metabolism. Evidence for preferential phosphorylation of glucose by intramitochondrially generated ATP. J Biol Chem. 1988;263(33):17422–8.

    Article  CAS  PubMed  Google Scholar 

  86. Forbes GB, Reina JC. Adult lean body mass declines with age: some longitudinal observations. Metabolism. 1970;19(9):653–63.

    Article  CAS  PubMed  Google Scholar 

  87. Gheller BJ, et al. Understanding age-related changes in skeletal muscle metabolism: differences between females and males. Annu Rev Nutr. 2016;36:129–56.

    Article  CAS  PubMed  Google Scholar 

  88. Haizlip KM, Harrison BC, Leinwand LA. Sex-based differences in skeletal muscle kinetics and fiber-type composition. Physiology (Bethesda). 2015;30(1):30–9.

    CAS  PubMed Central  Google Scholar 

  89. Bogan JS. Regulation of glucose transporter translocation in health and diabetes. Annu Rev Biochem. 2012;81:507–32.

    Article  CAS  PubMed  Google Scholar 

  90. Cline GW, et al. Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med. 1999;341(4):240–6.

    Article  CAS  PubMed  Google Scholar 

  91. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004;89(6):2548–56.

    Article  CAS  PubMed  Google Scholar 

  92. Ferrannini E, et al. Effect of fatty acids on glucose production and utilization in man. J Clin Invest. 1983;72(5):1737–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ismail-Beigi F. Metabolic regulation of glucose transport. J Membr Biol. 1993;135(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  94. Marom EM, et al. Correlation of FDG-PET imaging with Glut-1 and Glut-3 expression in early-stage non-small cell lung cancer. Lung Cancer. 2001;33(2–3):99–107.

    Article  CAS  PubMed  Google Scholar 

  95. Yip WCY, et al. Prevalence of pre-diabetes across ethnicities: a review of impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) for classification of dysglycaemia. Nutrients. 2017;9(11).

    Article  PubMed Central  CAS  Google Scholar 

  96. Simonson GD, Kendall DM. Diagnosis of insulin resistance and associated syndromes: the spectrum from the metabolic syndrome to type 2 diabetes mellitus. Coron Artery Dis. 2005;16(8):465–72.

    Article  PubMed  Google Scholar 

  97. Slieker LJ, et al. Glucose transporter levels in tissues of spontaneously diabetic Zucker fa/fa rat (ZDF/drt) and viable yellow mouse (Avy/a). Diabetes. 1992;41(2):187–93.

    Article  CAS  PubMed  Google Scholar 

  98. Kelley DE, et al. The effect of non-insulin-dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle. J Clin Invest. 1996;97(12):2705–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kelley DE, Williams KV, Price JC. Insulin regulation of glucose transport and phosphorylation in skeletal muscle assessed by PET. Am J Phys. 1999;277(2 Pt 1):E361–9.

    CAS  Google Scholar 

  100. Pardridge WM, Boado RJ, Farrell CR. Brain-type glucose transporter (GLUT-1) is selectively localized to the blood–brain barrier. Studies with quantitative western blotting and in situ hybridization. J Biol Chem. 1990;265(29):18035–40.

    Article  CAS  PubMed  Google Scholar 

  101. Vannucci SJ, Maher F, Simpson IA. Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia. 1997;21(1):2–21.

    Article  CAS  PubMed  Google Scholar 

  102. Adeva-Andany MM, et al. Liver glucose metabolism in humans. Biosci Rep. 2016;36(6):e00416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ferrannini E, et al. The disposal of an oral glucose load in healthy subjects. A quantitative study. Diabetes. 1985;34(6):580–8.

    Article  CAS  PubMed  Google Scholar 

  104. Woerle HJ, et al. Pathways for glucose disposal after meal ingestion in humans. Am J Physiol Endocrinol Metab. 2003;284(4):E716–25.

    Article  CAS  PubMed  Google Scholar 

  105. Adeva-Andany MM, et al. Glycogen metabolism in humans. BBA Clin. 2016;5:85–100.

    Article  PubMed  PubMed Central  Google Scholar 

  106. McDevitt RM, et al. De novo lipogenesis during controlled overfeeding with sucrose or glucose in lean and obese women. Am J Clin Nutr. 2001;74(6):737–46.

    Article  CAS  PubMed  Google Scholar 

  107. Karim S, Adams DH, Lalor PF. Hepatic expression and cellular distribution of the glucose transporter family. World J Gastroenterol. 2012;18(46):6771–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Michels NA. Newer anatomy of the liver and its variant blood supply and collateral circulation. Am J Surg. 1966;112(3):337–47.

    Article  CAS  PubMed  Google Scholar 

  109. Selle D, et al. Analysis of vasculature for liver surgical planning. IEEE Trans Med Imaging. 2002;21(11):1344–57.

    Article  PubMed  Google Scholar 

  110. Joost HG, Thorens B. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol Membr Biol. 2001;18(4):247–56.

    Article  CAS  PubMed  Google Scholar 

  111. Harik SI, Behmand RA, Arafah BM. Chronic hyperglycemia increases the density of glucose transporters in human erythrocyte membranes. J Clin Endocrinol Metab. 1991;72(4):814–8.

    Article  CAS  PubMed  Google Scholar 

  112. Bertoldo A, et al. Interactions between delivery, transport, and phosphorylation of glucose in governing uptake into human skeletal muscle. Diabetes. 2006;55(11):3028–37.

    Article  CAS  PubMed  Google Scholar 

  113. James DE. Targeting of the insulin-regulatable glucose transporter (GLUT-4). Biochem Soc Trans. 1994;22(3):668–70.

    Article  CAS  PubMed  Google Scholar 

  114. Roy FN, et al. Impact of intravenous insulin on 18F-FDG PET in diabetic cancer patients. J Nucl Med. 2009;50(2):178–83.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research study was not supported by any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

We would like to acknowledge Abdullah Al-Zaghal and Thomas J. Werner for their contributions to the revised version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abass Alavi.

Ethics declarations

Conflict of interest

All the authors confirm that there is no conflict of interest to declare. This paper has received no grant from any funding source.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskian, M., Alavi, A., Khorasanizadeh, M. et al. Effect of blood glucose level on standardized uptake value (SUV) in 18F- FDG PET-scan: a systematic review and meta-analysis of 20,807 individual SUV measurements. Eur J Nucl Med Mol Imaging 46, 224–237 (2019). https://doi.org/10.1007/s00259-018-4194-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-018-4194-x

Keywords

Navigation