Skip to main content

Advertisement

Log in

Hypermetabolism in the cerebellum and brainstem and cortical hypometabolism are independently associated with cognitive impairment in Parkinson’s disease

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Cognitive impairment (CI) in Parkinson’s disease (PD) is associated with a widespread reduction in cortical glucose metabolism and relative increases in the cerebellum and brainstem as measured using 18F-fluorodesoxyglucose (FDG) PET. We separately analysed CI-related hypermetabolism and hypometabolism in comparison with neuropsychological test performance and investigated whether increased FDG uptake is a true feature of the disease or a normalization effect.

Methods

The study included 29 subjects (12 patients with PD, 10 patients with PD dementia and 7 healthy controls") who underwent FDG PET and comprehensive neuropsychological testing. Test performance across various cognitive domains was summarized in a cognitive staging score. Metabolic indices reflecting associated changes in regional cerebral glucose metabolism (rCGM) were calculated: index(−) for CI-related hypometabolism, and index(+) for CI-related hypermetabolism. We tested whether index(+) offered additional value in predicting the severity of CI in multiple regression analysis.

Results

At higher stages of CI, increased rCGM was found in the posterior cerebellar vermis and pons, associated with impaired attention, executive function and memory. Reduced rCGM was found in various cortical regions in agreement with the literature. In multiple regression analysis, both indices independently predicted the severity of CI with a whole-model R2 of 0.68 (index(−), p = 0.0006; index(+), p = 0.013), confirmed by alternative analyses combining different reference tissues in the multiple regression.

Conclusion

We found CI-related hypermetabolism in cerebellar regions that are known to be involved in several cognitive functions and in the pons. These alterations may represent compensatory activation of cognitive networks including cerebropontocerebellar tracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fereshtehnejad SM, Romenets SR, Anang JB, Latreille V, Gagnon JF, Postuma RB. New clinical subtypes of Parkinson disease and their longitudinal progression: a prospective cohort comparison with other phenotypes. JAMA Neurol. 2015;72(8):863–73. https://doi.org/10.1001/jamaneurol.2015.0703.

    Article  PubMed  Google Scholar 

  2. Kehagia AA, Barker RA, Robbins TW. Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurol. 2010;9(12):1200–13. https://doi.org/10.1016/s1474-4422(10)70212-x.

    Article  PubMed  Google Scholar 

  3. Biundo R, Weis L, Antonini A. Cognitive decline in Parkinson’s disease: the complex picture. NPJ Parkinsons Dis. 2016;2:16018. https://doi.org/10.1038/npjparkd.2016.18.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Garcia-Garcia D, Clavero P, Gasca Salas C, Lamet I, Arbizu J, Gonzalez-Redondo R, et al. Posterior parietooccipital hypometabolism may differentiate mild cognitive impairment from dementia in Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2012;39(11):1767–77. https://doi.org/10.1007/s00259-012-2198-5.

    Article  PubMed  Google Scholar 

  5. González-Redondo R, García-García D, Clavero P, Gasca-Salas C, García-Eulate R, Zubieta JL, et al. Grey matter hypometabolism and atrophy in Parkinson’s disease with cognitive impairment: a two-step process. Brain J Neurol. 2014;137(8):2356–67. https://doi.org/10.1093/brain/awu159.

    Article  Google Scholar 

  6. Huang C, Mattis P, Perrine K, Brown N, Dhawan V, Eidelberg D. Metabolic abnormalities associated with mild cognitive impairment in Parkinson disease. Neurology. 2008;70(16 Pt 2):1470–7. https://doi.org/10.1212/01.wnl.0000304050.05332.9c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jokinen P, Scheinin N, Aalto S, Nagren K, Savisto N, Parkkola R, et al. [(11)C]PIB-, [(18)F]FDG-PET and MRI imaging in patients with Parkinson’s disease with and without dementia. Parkinsonism Relat Disord. 2010;16(10):666–70. https://doi.org/10.1016/j.parkreldis.2010.08.021.

    Article  PubMed  Google Scholar 

  8. Liepelt I, Reimold M, Maetzler W, Godau J, Reischl G, Gaenslen A, et al. Cortical hypometabolism assessed by a metabolic ratio in Parkinson’s disease primarily reflects cognitive deterioration-[18F]FDG-PET. Mov Disord. 2009;24(10):1504–11. https://doi.org/10.1002/mds.22662.

    Article  PubMed  Google Scholar 

  9. Meles SK, Tang CC, Teune LK, Dierckx RA, Dhawan V, Mattis PJ, et al. Abnormal metabolic pattern associated with cognitive impairment in Parkinson’s disease: a validation study. J Cereb Blood Flow Metab. 2015;35(9):1478–84. https://doi.org/10.1038/jcbfm.2015.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bohnen NI, Koeppe RA, Minoshima S, Giordani B, Albin RL, Frey KA, et al. Cerebral glucose metabolic features of Parkinson disease and incident dementia: longitudinal study. J Nucl Med. 2011;52(6):848–55. https://doi.org/10.2967/jnumed.111.089946.

    Article  CAS  PubMed  Google Scholar 

  11. Eckert T, Tang C, Eidelberg D. Assessment of the progression of Parkinson’s disease: a metabolic network approach. Lancet Neurol. 2007;6(10):926–32. https://doi.org/10.1016/s1474-4422(07)70245-4.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Poston KL, Eidelberg D. Network biomarkers for the diagnosis and treatment of movement disorders. Neurobiol Dis. 2009;35(2):141–7. https://doi.org/10.1016/j.nbd.2008.09.026.

    Article  CAS  PubMed  Google Scholar 

  13. Borghammer P, Hansen SB, Eggers C, Chakravarty M, Vang K, Aanerud J, et al. Glucose metabolism in small subcortical structures in Parkinson’s disease. Acta Neurol Scand. 2012;125(5):303–10. https://doi.org/10.1111/j.1600-0404.2011.01556.x.

    Article  PubMed  Google Scholar 

  14. Ma Y, Tang C, Moeller JR, Eidelberg D. Abnormal regional brain function in Parkinson’s disease: truth or fiction? Neuroimage. 2009;45(2):260–6. https://doi.org/10.1016/j.neuroimage.2008.09.052.

    Article  PubMed  Google Scholar 

  15. Edison P, Ahmed I, Fan Z, Hinz R, Gelosa G, Ray Chaudhuri K, et al. Microglia, amyloid, and glucose metabolism in Parkinson’s disease with and without dementia. Neuropsychopharmacology. 2013;38(6):938–49. https://doi.org/10.1038/npp.2012.255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dubois B, Burn D, Goetz C, Aarsland D, Brown RG, Broe GA, et al. Diagnostic procedures for Parkinson’s disease dementia: recommendations from the Movement Disorder Society Task Force. Mov Disord. 2007;22(16):2314–24. https://doi.org/10.1002/mds.21844.

    Article  PubMed  Google Scholar 

  17. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-IV. Washington DC: American Psychiatric Association; 1994.

  18. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.

    Article  CAS  Google Scholar 

  19. Cummings JL. The Neuropsychiatric Inventory: assessing psychopathology in dementia patients. Neurology. 1997;48(5 Suppl 6):S10–6.

    Article  CAS  Google Scholar 

  20. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45. https://doi.org/10.1152/jn.00339.2011.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Trošt M, Brezovar S, Tang CC, Eidelberg D, Zupančič Križnar N,Gregorič Kramberger M, et al. Metabolic brain changes related to specific cognitive impairment in non-demented Parkinson’s disease patients. Mov Disord. 2016;31(Suppl 2):S428.

    Google Scholar 

  22. Huang C, Mattis P, Tang C, Perrine K, Carbon M, Eidelberg D. Metabolic brain networks associated with cognitive function in Parkinson’s disease. Neuroimage. 2007;34(2):714–23. https://doi.org/10.1016/j.neuroimage.2006.09.003.

    Article  Google Scholar 

  23. Keren-Happuch E, Chen S-HA, Ho M-HR, Desmond JE. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp. 2014;35(2):593–615. https://doi.org/10.1002/hbm.22194.

    Article  Google Scholar 

  24. Tang Y, Ge J, Liu F, Wu P, Guo S, Liu Z, et al. Cerebral metabolic differences associated with cognitive impairment in Parkinson’s disease. PLoS One. 2016;11(4):e0152716. https://doi.org/10.1371/journal.pone.0152716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tard C, Demailly F, Delval A, Semah F, Defebvre L, Dujardin K, et al. Hypometabolism in posterior and temporal areas of the brain is associated with cognitive decline in Parkinson’s disease. J Parkinsons Dis. 2015;5(3):569–74. https://doi.org/10.3233/JPD-150583.

    Article  PubMed  Google Scholar 

  26. Samson M, Claassen DO. Neurodegeneration and the cerebellum. Neurodegener Dis. 2017;17(4-5):155–65. https://doi.org/10.1159/000460818.

    Article  PubMed  Google Scholar 

  27. Wu T, Hallett M. The cerebellum in Parkinson’s disease. Brain. 2013;136(Pt 3):696–709. https://doi.org/10.1093/brain/aws360.

    Article  PubMed  Google Scholar 

  28. Mink JW. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol. 1996;50(4):381–425.

    Article  CAS  Google Scholar 

  29. Salmi J, Pallesen KJ, Neuvonen T, Brattico E, Korvenoja A, Salonen O, et al. Cognitive and motor loops of the human cerebro-cerebellar system. J Cogn Neurosci. 2010;22(11):2663–76. https://doi.org/10.1162/jocn.2009.21382.

    Article  PubMed  Google Scholar 

  30. Caligiore D, Pezzulo G, Baldassarre G, Bostan AC, Strick PL, Doya K, et al. Consensus paper: towards a systems-level view of cerebellar function: the interplay between cerebellum, basal ganglia, and cortex. Cerebellum. 2017;16(1):203–29. https://doi.org/10.1007/s12311-016-0763-3.

    Article  PubMed  Google Scholar 

  31. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94. https://doi.org/10.1523/jneurosci.1868-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. van Eimeren T, Monchi O, Ballanger B, Strafella AP. Dysfunction of the default mode network in Parkinson disease: a functional magnetic resonance imaging study. Arch Neurol. 2009;66(7):877–83. https://doi.org/10.1001/archneurol.2009.97.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Disbrow EA, Carmichael O, He J, Lanni KE, Dressler EM, Zhang L, et al. Resting state functional connectivity is associated with cognitive dysfunction in non-demented people with Parkinson’s disease. J Parkinsons Dis. 2014;4(3):453–65. https://doi.org/10.3233/jpd-130341.

    Article  CAS  PubMed  Google Scholar 

  34. Simioni AC, Dagher A, Fellows LK. Compensatory striatal–cerebellar connectivity in mild–moderate Parkinson’s disease. Neuroimage Clin. 2016;10:54–62. https://doi.org/10.1016/j.nicl.2015.11.005.

    Article  PubMed  Google Scholar 

  35. Vo A, Sako W, Fujita K, Peng S, Mattis PJ, Skidmore FM, et al. Parkinson’s disease-related network topographies characterized with resting state functional MRI. Hum Brain Mapp. 2017;38(2):617–30. https://doi.org/10.1002/hbm.23260.

    Article  PubMed  Google Scholar 

  36. Wong K, Sidransky E, Verma A, Mixon T, Sandberg GD, Wakefield LK, et al. Neuropathology provides clues to the pathophysiology of Gaucher disease. Mol Genet Metab. 2004;82(3):192–207. https://doi.org/10.1016/j.ymgme.2004.04.011.

    Article  CAS  PubMed  Google Scholar 

  37. Yu H, Sternad D, Corcos DM, Vaillancourt DE. Role of hyperactive cerebellum and motor cortex in Parkinson’s disease. Neuroimage. 2007;35(1):222–33. https://doi.org/10.1016/j.neuroimage.2006.11.047.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Goerendt IK, Lawrence AD, Brooks DJ. Reward processing in health and Parkinson’s disease: neural organization and reorganization. Cereb Cortex. 2004;14(1):73–80.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the funding received from the European Community’s Seventh Framework Programme.

Funding

The research leading to these results received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 603646 (MultISyn).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Reimold.

Ethics declarations

Conflicts of interest

None.

Ethical approval

All procedures performed in this study were in accordance with the principles of the 1964 Declaration of Helsinki and its later amendments and were approved by the local ethics committee.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

ESM 1

Neuropsychological test battery: descriptive statistics for the four cognitive staging groups and results from correlation analysis (voxelwise multiple regression with two independent variables, i.e. the respective neuropsychological score and, as nuisance variable, UPDRSIII). CI = cognitive impairment (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blum, D., la Fougère, C., Pilotto, A. et al. Hypermetabolism in the cerebellum and brainstem and cortical hypometabolism are independently associated with cognitive impairment in Parkinson’s disease. Eur J Nucl Med Mol Imaging 45, 2387–2395 (2018). https://doi.org/10.1007/s00259-018-4085-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-018-4085-1

Keywords

Navigation