Skip to main content
Log in

Comparison of the clinical performance of upper abdominal PET/DCE-MRI with and without concurrent respiratory motion correction (MoCo)

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To compare the clinical performance of upper abdominal PET/DCE-MRI with and without concurrent respiratory motion correction (MoCo).

Methods

MoCo PET/DCE-MRI of the upper abdomen was acquired in 44 consecutive oncologic patients and compared with non-MoCo PET/MRI. SUVmax and MTV of FDG-avid upper abdominal malignant lesions were assessed on MoCo and non-MoCo PET images. Image quality was compared between MoCo DCE-MRI and non-MoCo CE-MRI, and between fused MoCo PET/MRI and fused non-MoCo PET/MRI images.

Results

MoCo PET resulted in higher SUVmax (10.8 ± 5.45) than non-MoCo PET (9.62 ± 5.42) and lower MTV (35.55 ± 141.95 cm3) than non-MoCo PET (38.11 ± 198.14 cm3; p < 0.005 for both). The quality of MoCo DCE-MRI images (4.73 ± 0.5) was higher than that of non-MoCo CE-MRI images (4.53±0.71; p = 0.037). The quality of fused MoCo-PET/MRI images (4.96 ± 0.16) was higher than that of fused non-MoCo PET/MRI images (4.39 ± 0.66; p < 0.005).

Conclusion

MoCo PET/MRI provided qualitatively better images than non-MoCo PET/MRI, and upper abdominal malignant lesions demonstrated higher SUVmax and lower MTV on MoCo PET/MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MoCo:

motion corrected

PET:

positron emission tomography

MR:

magnetic resonance

DCE:

dynamic contrast enhanced

CE:

contrast enhanced

VIBE:

volume interpolated breath-hold examination

FDG:

18Fluorodeoxyglucose

SUVmax:

maximal standard uptake value

MTV:

metabolic tumor volume.

References

  1. Polycarpou I, Tsoumpas C, King AP, Marsden PK. Impact of respiratory motion correction and spatial resolution on lesion detection in PET: a simulation study based on real MR dynamic data. Phys Med Biol. 2014;59:697–713.

    Article  PubMed  Google Scholar 

  2. Li G, Schmidtlein CR, Burger IA, Ridge CA, Solomon SB, Humm JL. Assessing and accounting for the impact of respiratory motion on FDG uptake and viable volume for liver lesions in free-breathing PET using respiration-suspended PET images as reference. Med Phys. 2014;41:091905.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Liu C, Pierce LA, Alessio AM, Kinahan PE. The impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging. Phys Med Biol. 2009;54:7345–62.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Callahan J, Kron T, Siva S, Simoens N, Edgar A, Everitt S, et al. Geographic miss of lung tumours due to respiratory motion: a comparison of 3D vs 4D PET/CT defined target volumes. Radiat Oncol. 2014;9:291.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Kalantari F, Li T, Jin M, Wang J. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR). Phys Med Biol. 2016;61:5639–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S.

    Article  CAS  PubMed  Google Scholar 

  7. Pietryga JA, Burke LMB, Marin D, Jaffe TA, Bashir MR. Respiratory motion artifact affecting hepatic arterial phase imaging with gadoxetate disodium: examination recovery with a multiple arterial phase acquisition. Radiology. 2014;271:426–34.

    Article  PubMed  Google Scholar 

  8. Davenport MS, Caoili EM, Kaza RK, Hussain HK. Matched within-patient cohort study of transient arterial phase respiratory motion-related artifact in MR imaging of the liver: gadoxetate disodium versus gadobenate dimeglumine. Radiology. 2014;272:123–31.

    Article  PubMed  Google Scholar 

  9. Schleyer PJ, O’Doherty MJ, Barrington SF, Marsden PK. Retrospective data-driven respiratory gating for PET/CT. Phys Med Biol. 2009;54:1935–50.

    Article  PubMed  Google Scholar 

  10. Fürst S, Grimm R, Hong I, Souvatzoglou M, Casey ME, Schwaiger M, et al. Motion correction strategies for integrated PET/MR. J Nucl Med. 2015;56:261–9.

    Article  PubMed  Google Scholar 

  11. Hope TA, Verdin EF, Bergsland EK, Ohliger MA, Corvera CU, Nakakura EK. Correcting for respiratory motion in liver PET/MRI: preliminary evaluation of the utility of bellows and navigated hepatobiliary phase imaging. EJNMMI Phys. 2015;2:21.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Petibon Y, Huang C, Ouyang J, Reese TG, Li Q, Syrkina A, et al. Relative role of motion and PSF compensation in whole-body oncologic PET-MR imaging. Med Phys. 2014;41:042503.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Manber R, Thielemans K, Hutton BF, Barnes A, Ourselin S, Arridge S, et al. Practical PET respiratory motion correction in clinical PET/MR. J Nucl Med. 2015;56:890–6.

    Article  PubMed  Google Scholar 

  14. Balfour DR, Marsden PK, Polycarpou I, Kolbitsch C, King AP. Respiratory motion correction of PET using MR-constrained PET-PET registration. Biomed Eng Online. 2015;14:85.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Rank CM, Heußer T, Wetscherek A, Freitag MT, Sedlaczek O, Schlemmer HP, et al. Respiratory motion compensation for simultaneous PET/MR based on highly undersampled MR data. Med Phys. 2016;43:6234.

    Article  PubMed  Google Scholar 

  16. Fuin N, Catalano OA, Scipioni M, Canjels LPW, Izquierdo D, Pedemonte S, et al. Concurrent respiratory motion correction of abdominal PET and DCE-MRI using a compressed sensing approach. J Nucl Med. 2018; https://doi.org/10.2967/jnumed.117.203943.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Catana C. Motion correction options in PET/MRI. Semin Nucl Med. 2015;45:212–23.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Chen KT, Salcedo S, Chonde DB, Izquierdo-Garcia D, Levine MA, Price JC. et al. MR-assisted PET motion correction in simultaneous PET/MRI studies of dementia subjects. J Magn Reson Imaging. 2018; https://doi.org/10.1002/jmri.26000.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Catana C, Benner T, van der Kouwe A, Byars L, Hamm M, Chonde DB, et al. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner. J Nucl Med. 2011;52:154–61.

    Article  PubMed  Google Scholar 

  20. Catana C, Guimaraes AR, Rosen BR. PET and MR imaging: the odd couple or a match made in heaven? J Nucl Med. 2013;54:815–24.

    Article  CAS  PubMed  Google Scholar 

  21. Bamrungchart S, Tantaway EM, Midia EC, Hernandes MA, Srirattanapong S, Dale BM, et al. Free breathing three-dimensional gradient echo-sequence with radial data sampling (radial 3D-GRE) examination of the pancreas: comparison with standard 3D-GRE volumetric interpolated breathhold examination (VIBE). J Magn Reson Imaging. 2013;38:1572–7.

    Article  PubMed  Google Scholar 

  22. Azevedo RM, de Campos RO, Ramalho M, Herédia V, Dale BM, Semelka RC. Free-breathing 3D T1-weighted gradient-echo sequence with radial data sampling in abdominal MRI: preliminary observations. AJR Am J Roentgenol. 2011;197:650–7.

    Article  PubMed  Google Scholar 

  23. Kaltenbach B, Roman A, Polkowski C, Gruber-Rouh T, Bauer RW, Hammerstingl R, et al. Free-breathing dynamic liver examination using a radial 3D T1-weighted gradient echo sequence with moderate undersampling for patients with limited breath-holding capacity. Eur J Radiol. 2017;86:26–32.

    Article  PubMed  Google Scholar 

  24. Reiner CS, Neville AM, Nazeer HK, Breault S, Dale BM, Merkle EM, et al. Contrast-enhanced free-breathing 3D T1-weighted gradient-echo sequence for hepatobiliary MRI in patients with breath-holding difficulties. Eur Radiol. 2013;23:3087–93.

    Article  CAS  PubMed  Google Scholar 

  25. Lee CK, Seo N, Kim B, Huh J, Kim JK, Lee SS, et al. The effects of breathing motion on DCE-MRI images: phantom studies simulating respiratory motion to compare CAIPIRINHA-VIBE, radial-VIBE, and conventional VIBE. Korean J Radiol. 2017;18:289–98.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Ogawa M, Kawai T, Kan H, Kobayashi S, Akagawa Y, Suzuki K, et al. Shortened breath-hold contrast-enhanced MRI of the liver using a new parallel imaging technique, CAIPIRINHA (controlled aliasing in parallel imaging results in higher acceleration): a comparison with conventional GRAPPA technique. Abdom Imaging. 2015;40:3091–8.

    Article  PubMed  Google Scholar 

  27. Nyflot MJ, Lee TC, Alessio AM, Wollenweber SD, Stearns CW, Bowen SR, et al. Impact of CT attenuation correction method on quantitative respiratory-correlated (4D) PET/CT imaging. Med Phys. 2015;42:110–20.

    Article  PubMed  Google Scholar 

  28. Blackall JM, King AP, Penney GP, Adam A, Hawkes DJ. A statistical model of respiratory motion and deformation of the liver. In: Niessen WJ, Viergever MA, editors. Medical image computing and computer-assisted intervention – MICCAI 2001, vol. 2208. Berlin Heidelberg: Springer; 2001. p. 1338–40.

    Chapter  Google Scholar 

  29. Goerres GW, Kamel E, Seifert B, Burger C, Buck A, Hany TF, et al. Accuracy of image coregistration of pulmonary lesions in patients with non-small cell lung cancer using an integrated PET/CT system. J Nucl Med. 2002;43:1469–75.

    PubMed  Google Scholar 

  30. Erdi YE, Nehmeh SA, Pan T, Pevsner A, Rosenzweig KE, Mageras G, et al. The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. J Nucl Med. 2004;45:1287–92.

    PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the following individuals for their help with the PET/MRI data acquisition and initial processing (in alphabetical order): Grae Arabasz, Regan Butterfield, Shirley Hsu, Mary O’Hara, and Lawrence White. We gratefully acknowledge the support of NVIDIA Corporation in donating the Tesla K40 and the Titan X Pascal GPUs used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onofrio A. Catalano.

Ethics declarations

Conflicts of interest

None.

Ethical approval

The clinical institutional review board approved this study. All procedures were performed in accordance with the principles of the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

For this type of retrospective study formal consent is not required; however, patients provided written informed consent at the time of PET/MRI for possible usage of their data in subsequent research studies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catalano, O.A., Umutlu, L., Fuin, N. et al. Comparison of the clinical performance of upper abdominal PET/DCE-MRI with and without concurrent respiratory motion correction (MoCo). Eur J Nucl Med Mol Imaging 45, 2147–2154 (2018). https://doi.org/10.1007/s00259-018-4084-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-018-4084-2

Keywords

Navigation