Skip to main content
Log in

Clinical utility of FDG-PET in amyotrophic lateral sclerosis and Huntington’s disease

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Aim

To evaluate the incremental value of FDG-PET over clinical tests in: (i) diagnosis of amyotrophic lateral sclerosis (ALS); (ii) picking early signs of neurodegeneration in patients with a genetic risk of Huntington’s disease (HD); and detecting metabolic changes related to cognitive impairment in (iii) ALS and (iv) HD patients.

Methods

Four comprehensive literature searches were conducted using the PICO model to extract evidence from relevant studies. An expert panel then voted using the Delphi method on these four diagnostic scenarios.

Results

The availability of evidence was good for FDG-PET utility to support the diagnosis of ALS, poor for identifying presymptomatic subjects carrying HD mutation who will convert to HD, and lacking for identifying cognitive-related metabolic changes in both ALS and HD. After the Delphi consensual procedure, the panel did not support the clinical use of FDG-PET for any of the four scenarios.

Conclusion

Relative to other neurodegenerative diseases, the clinical use of FDG-PET in ALS and HD is still in its infancy. Once validated by disease-control studies, FDG-PET might represent a potentially useful biomarker for ALS diagnosis. FDG-PET is presently not justified as a routine investigation to predict conversion to HD, nor to detect evidence of brain dysfunction justifying cognitive decline in ALS and HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nobili F, Arbizu J, Bouwman FH, Drzezga A, Agosta F, Nestor P, et al. EANM-EAN recommendations for the use of brain 18F-Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) in neurodegenerative cognitive impairment and dementia: Delphi consensus. Eur J Neurol. 2018 (submitted, March 13, 2018; MS: EJoN-18-0310).

  2. Boccardi M, Festari C, Altomare D, Gandolfo F, Orini S, Nobili F et al. Assessing FDG-PET diagnostic accuracy studies to develop recommendations for clinical use in dementia. Eur J Nucl Med Mol Imaging. 2018; https://doi.org/10.1007/s00259-018-4024-1.

    Article  CAS  PubMed  Google Scholar 

  3. Leone MA, Brainin M, Boon P, Pugliatti M, Keindl M, Bassetti CL. Guidance for the preparation of neurological management guidelines by EFNS scientific task forces - revised recommendations 2012. Eur J Neurol. 2013;20(3):410–9. https://doi.org/10.1111/ene.12043.

    Article  CAS  PubMed  Google Scholar 

  4. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006–12. https://doi.org/10.1016/j.jclinepi.2009.06.005.

    Article  PubMed  Google Scholar 

  5. Coon EA, Whitwell JL, Parisi JE, Dickson DW, Josephs KA. Right temporal variant frontotemporal dementia with motor neuron disease. J Clin Neurosci. 2012;19(1):85–91. https://doi.org/10.1016/j.jocn.2011.06.007.

    Article  PubMed  Google Scholar 

  6. Garraux G, Salmon E, Degueldre C, Lemaire C, Franck G. Medial temporal lobe metabolic impairment in dementia associated with motor neuron disease. J Neurol Sci. 1999;168(2):145–50.

    Article  CAS  PubMed  Google Scholar 

  7. Hoffman JM, Mazziotta JC, Hawk TC, Sumida R. Cerebral glucose utilization in motor neuron disease. Arch Neurol. 1992;49(8):849–54.

    Article  CAS  PubMed  Google Scholar 

  8. Jeong Y, Park KC, Cho SS, Kim EJ, Kang SJ, Kim SE, et al. Pattern of glucose hypometabolism in frontotemporal dementia with motor neuron disease. Neurology. 2005;64(4):734–6. https://doi.org/10.1212/01.WNL.0000152047.58767.9D.

    Article  CAS  PubMed  Google Scholar 

  9. Tanaka M, Kondo S, Hirai S, Sun X, Yamagishi T, Okamoto K. Cerebral blood flow and oxygen metabolism in progressive dementia associated with amyotrophic lateral sclerosis. J Neurol Sci. 1993;120(1):22–8.

    Article  CAS  PubMed  Google Scholar 

  10. Tanaka M, Ichiba T, Kondo S, Hirai S, Okamoto K. Cerebral blood flow and oxygen metabolism in patients with progressive dementia and amyotrophic lateral sclerosis. Neurol Res. 2003;25(4):351–6. https://doi.org/10.1179/016164103101201670.

    Article  PubMed  Google Scholar 

  11. Chio A, Calvo A, Moglia C, Restagno G, Ossola I, Brunetti M, et al. Amyotrophic lateral sclerosis-frontotemporal lobar dementia in 3 families with p.Ala382Thr TARDBP mutations. Arch Neurol. 2010;67(8):1002–9. https://doi.org/10.1001/archneurol.2010.173.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Carluer L, Mondou A, Buhour MS, Laisney M, Pelerin A, Eustache F, et al. Neural substrate of cognitive theory of mind impairment in amyotrophic lateral sclerosis. Cortex. 2015;65:19–30. https://doi.org/10.1016/j.cortex.2014.12.010.

    Article  PubMed  Google Scholar 

  13. Pagani M, Chio A, Valentini MC, Oberg J, Nobili F, Calvo A, et al. Functional pattern of brain FDG-PET in amyotrophic lateral sclerosis. Neurology. 2014;83(12):1067–74. https://doi.org/10.1212/WNL.0000000000000792.

    Article  CAS  PubMed  Google Scholar 

  14. Van Laere K, Vanhee A, Verschueren J, De Coster L, Driesen A, Dupont P, et al. Value of 18fluorodeoxyglucose-positron-emission tomography in amyotrophic lateral sclerosis: a prospective study. JAMA Neurol. 2014;71(5):553–61. https://doi.org/10.1001/jamaneurol.2014.62.

    Article  PubMed  Google Scholar 

  15. Cistaro A, Pagani M, Montuschi A, Calvo A, Moglia C, Canosa A, et al. The metabolic signature of C9ORF72-related ALS: FDG PET comparison with nonmutated patients. Eur J Nucl Med Mol Imaging. 2014;41(5):844–52. https://doi.org/10.1007/s00259-013-2667-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cistaro A, Valentini MC, Chio A, Nobili F, Calvo A, Moglia C, et al. Brain hypermetabolism in amyotrophic lateral sclerosis: a FDG PET study in ALS of spinal and bulbar onset. Eur J Nucl Med Mol Imaging. 2012;39(2):251–9. https://doi.org/10.1007/s00259-011-1979-6.

    Article  CAS  PubMed  Google Scholar 

  17. Dalakas MC, Hatazawa J, Brooks RA, Di Chiro G. Lowered cerebral glucose utilization in amyotrophic lateral sclerosis. Ann Neurol. 1987;22(5):580–6. https://doi.org/10.1002/ana.410220504.

    Article  CAS  PubMed  Google Scholar 

  18. Hatazawa J, Brooks RA, Dalakas MC, Mansi L, Di Chiro G. Cortical motor-sensory hypometabolism in amyotrophic lateral sclerosis: a PET study. J Comput Assist Tomogr. 1988;12(4):630–6.

    Article  CAS  PubMed  Google Scholar 

  19. Ludolph AC, Langen KJ, Regard M, Herzog H, Kemper B, Kuwert T, et al. Frontal lobe function in amyotrophic lateral sclerosis: a neuropsychologic and positron emission tomography study. Acta Neurol Scand. 1992;85(2):81–9.

    Article  CAS  PubMed  Google Scholar 

  20. Rajagopalan V, Pioro EP. Comparing brain structural MRI and metabolic FDG-PET changes in patients with ALS-FTD: 'the chicken or the egg?' question. J Neurol Neurosurg Psychiatry. 2015;86(9):952–8. https://doi.org/10.1136/jnnp-2014-308239.

    Article  PubMed  Google Scholar 

  21. Solje E, Aaltokallio H, Koivumaa-Honkanen H, Suhonen NM, Moilanen V, Kiviharju A, et al. The phenotype of the C9ORF72 expansion carriers according to revised criteria for bvFTD. PLoS One. 2015;10(7):e0131817. https://doi.org/10.1371/journal.pone.0131817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boeve BF, Boylan KB, Graff-Radford NR, DeJesus-Hernandez M, Knopman DS, Pedraza O, et al. Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72. Brain. 2012;135(Pt 3):765–83. https://doi.org/10.1093/brain/aws004.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Canosa A, Pagani M, Cistaro A, Montuschi A, Iazzolino B, Fania P, et al. 18F-FDG-PET correlates of cognitive impairment in ALS. Neurology. 2016;86(1):44–9. https://doi.org/10.1212/WNL.0000000000002242.

    Article  CAS  PubMed  Google Scholar 

  24. Matusch A, Saft C, Elmenhorst D, Kraus PH, Gold R, Hartung HP, et al. Cross sectional PET study of cerebral adenosine A(1) receptors in premanifest and manifest Huntington's disease. Eur J Nucl Med Mol Imaging. 2014;41(6):1210–20. https://doi.org/10.1007/s00259-014-2724-8.

    Article  CAS  PubMed  Google Scholar 

  25. Politis M, Pavese N, Tai YF, Tabrizi SJ, Barker RA, Piccini P. Hypothalamic involvement in Huntington's disease: an in vivo PET study. Brain. 2008;131(Pt 11):2860–9. https://doi.org/10.1093/brain/awn244.

    Article  PubMed  Google Scholar 

  26. Grafton ST, Mazziotta JC, Pahl JJ, St George-Hyslop P, Haines JL, Gusella J, et al. A comparison of neurological, metabolic, structural, and genetic evaluations in persons at risk for Huntington's disease. Ann Neurol. 1990;28(5):614–21. https://doi.org/10.1002/ana.410280503.

    Article  CAS  PubMed  Google Scholar 

  27. Grafton ST, Mazziotta JC, Pahl JJ, St George-Hyslop P, Haines JL, Gusella J, et al. Serial changes of cerebral glucose metabolism and caudate size in persons at risk for Huntington's disease. Arch Neurol. 1992;49(11):1161–7.

    Article  CAS  PubMed  Google Scholar 

  28. Boecker H, Kuwert T, Langen KJ, Lange HW, Czech N, Ziemons K, et al. SPECT with HMPAO compared to PET with FDG in Huntington disease. J Comput Assist Tomogr. 1994;18(4):542–8.

    Article  CAS  PubMed  Google Scholar 

  29. Hayden MR, Martin WR, Stoessl AJ, Clark C, Hollenberg S, Adam MJ, et al. Positron emission tomography in the early diagnosis of Huntington's disease. Neurology. 1986;36(7):888–94.

    Article  CAS  PubMed  Google Scholar 

  30. Kuwert T, Lange HW, Langen KJ, Herzog H, Aulich A, Feinendegen LE. Cortical and subcortical glucose consumption measured by PET in patients with Huntington's disease. Brain. 1990;113(Pt 5):1405–23.

    Article  PubMed  Google Scholar 

  31. Lee SJ, Lee WY, Kim YK, An YS, Cho JW, Choi JY, et al. Apparent relative hypermetabolism of selective brain areas in Huntington disease and importance of reference region for analysis. Clin Nucl Med. 2012;37(7):663–8. https://doi.org/10.1097/RLU.0b013e3182478bf2.

    Article  PubMed  Google Scholar 

  32. Martin WR, Clark C, Ammann W, Stoessl AJ, Shtybel W, Hayden MR. Cortical glucose metabolism in Huntington's disease. Neurology. 1992;42(1):223–9.

    Article  CAS  PubMed  Google Scholar 

  33. Powers WJ, Videen TO, Markham J, McGee-Minnich L, Antenor-Dorsey JV, Hershey T, et al. Selective defect of in vivo glycolysis in early Huntington's disease striatum. Proc Natl Acad Sci U S A. 2007;104(8):2945–9. https://doi.org/10.1073/pnas.0609833104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Young AB, Penney JB, Starosta-Rubinstein S, Markel DS, Berent S, Giordani B, et al. PET scan investigations of Huntington's disease: cerebral metabolic correlates of neurological features and functional decline. Ann Neurol. 1986;20(3):296–303. https://doi.org/10.1002/ana.410200305.

    Article  CAS  PubMed  Google Scholar 

  35. Kuhl DE, Metter EJ, Riege WH. Patterns of local cerebral glucose utilization determined in Parkinson's disease by the [18F]fluorodeoxyglucose method. Ann Neurol. 1984;15(5):419–24. https://doi.org/10.1002/ana.410150504.

    Article  CAS  PubMed  Google Scholar 

  36. Kuwert T, Lange HW, Boecker H, Titz H, Herzog H, Aulich A, et al. Striatal glucose consumption in chorea-free subjects at risk of Huntington's disease. J Neurol. 1993;241(1):31–6.

    Article  CAS  PubMed  Google Scholar 

  37. Mazziotta JC, Phelps ME, Pahl JJ, Huang SC, Baxter LR, Riege WH, et al. Reduced cerebral glucose metabolism in asymptomatic subjects at risk for Huntington's disease. N Engl J Med. 1987;316(7):357–62. https://doi.org/10.1056/NEJM198702123160701.

    Article  CAS  PubMed  Google Scholar 

  38. Otsuka M, Ichiya Y, Kuwabara Y, Hosokawa S, Sasaki M, Fukumura T, et al. Cerebral glucose metabolism and striatal 18F-dopa uptake by PET in cases of chorea with or without dementia. J Neurol Sci. 1993;115(2):153–7.

    Article  CAS  PubMed  Google Scholar 

  39. Young AB, Penney JB, Starosta-Rubinstein S, Markel D, Berent S, Rothley J, et al. Normal caudate glucose metabolism in persons at risk for Huntington's disease. Arch Neurol. 1987;44(3):254–7.

    Article  CAS  PubMed  Google Scholar 

  40. Kuwert T, Noth J, Scholz D, Schwarz M, Lange HW, Topper R, et al. Comparison of somatosensory evoked potentials with striatal glucose consumption measured by positron emission tomography in the early diagnosis of Huntington's disease. Mov Disord. 1993;8(1):98–106. https://doi.org/10.1002/mds.870080118.

    Article  CAS  PubMed  Google Scholar 

  41. van Oostrom JC, Dekker M, Willemsen AT, de Jong BM, Roos RA, Leenders KL. Changes in striatal dopamine D2 receptor binding in pre-clinical Huntington's disease. Eur J Neurol. 2009;16(2):226–31. https://doi.org/10.1111/j.1468-1331.2008.02390.x.

    Article  PubMed  Google Scholar 

  42. Ciarmiello A, Giovacchini G, Orobello S, Bruselli L, Elifani F, Squitieri F. 18F-FDG PET uptake in the pre-Huntington disease caudate affects the time-to-onset independently of CAG expansion size. Eur J Nucl Med Mol Imaging. 2012;39(6):1030–6. https://doi.org/10.1007/s00259-012-2114-z.

    Article  CAS  PubMed  Google Scholar 

  43. Feigin A, Tang C, Ma Y, Mattis P, Zgaljardic D, Guttman M, et al. Thalamic metabolism and symptom onset in preclinical Huntington's disease. Brain. 2007;130(Pt 11):2858–67. https://doi.org/10.1093/brain/awm217.

    Article  CAS  PubMed  Google Scholar 

  44. Herben-Dekker M, van Oostrom JC, Roos RA, Jurgens CK, Witjes-Ane MN, Kremer HP, et al. Striatal metabolism and psychomotor speed as predictors of motor onset in Huntington's disease. J Neurol. 2014;261(7):1387–97. https://doi.org/10.1007/s00415-014-7350-7.

    Article  CAS  PubMed  Google Scholar 

  45. Tang CC, Feigin A, Ma Y, Habeck C, Paulsen JS, Leenders KL, et al. Metabolic network as a progression biomarker of premanifest Huntington's disease. J Clin Invest. 2013;123(9):4076–88. https://doi.org/10.1172/JCI69411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Antonini A, Leenders KL, Spiegel R, Meier D, Vontobel P, Weigell-Weber M, et al. Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington's disease. Brain. 1996;119(Pt 6):2085–95.

    Article  PubMed  Google Scholar 

  47. Ciarmiello A, Cannella M, Lastoria S, Simonelli M, Frati L, Rubinsztein DC, et al. Brain white-matter volume loss and glucose hypometabolism precede the clinical symptoms of Huntington's disease. J Nucl Med. 2006;47(2):215–22.

    CAS  PubMed  Google Scholar 

  48. Feigin A, Leenders KL, Moeller JR, Missimer J, Kuenig G, Spetsieris P, et al. Metabolic network abnormalities in early Huntington's disease: an [(18)F]FDG PET study. J Nucl Med. 2001;42(11):1591–5.

    CAS  PubMed  Google Scholar 

  49. van Oostrom JC, Maguire RP, Verschuuren-Bemelmans CC. Veenma-van der Duin L, Pruim J, Roos RA et al. striatal dopamine D2 receptors, metabolism, and volume in preclinical Huntington disease. Neurology. 2005;65(6):941–3. https://doi.org/10.1212/01.wnl.0000176071.08694.cc.

    Article  CAS  PubMed  Google Scholar 

  50. Allain P, Gaura V, Fasotti L, Chauvire V, Prundean A, Sherer-Gagou C, et al. The neural substrates of script knowledge deficits as revealed by a PET study in Huntington's disease. Neuropsychologia. 2011;49(9):2673–84. https://doi.org/10.1016/j.neuropsychologia.2011.05.015.

    Article  PubMed  Google Scholar 

  51. Berent S, Giordani B, Lehtinen S, Markel D, Penney JB, Buchtel HA, et al. Positron emission tomographic scan investigations of Huntington's disease: cerebral metabolic correlates of cognitive function. Ann Neurol. 1988;23(6):541–6. https://doi.org/10.1002/ana.410230603.

    Article  CAS  PubMed  Google Scholar 

  52. Pagani M, Oberg J, De Carli F, Calvo A, Moglia C, Canosa A, et al. Metabolic spatial connectivity in amyotrophic lateral sclerosis as revealed by independent component analysis. Hum Brain Mapp. 2016;37(3):942–53. https://doi.org/10.1002/hbm.23078.

    Article  PubMed  Google Scholar 

  53. Van Weehaeghe D, Ceccarini J, Delva A, Robberecht W, Van Damme P, Van Laere K. Prospective validation of 18F-FDG brain PET discriminant analysis methods in the diagnosis of amyotrophic lateral sclerosis. J Nucl Med. 2016;57(8):1238–43. https://doi.org/10.2967/jnumed.115.166272.

    Article  CAS  PubMed  Google Scholar 

  54. Strong MJ, Abrahams S, Goldstein LH, Woolley S, McLaughlin P, Snowden J, et al. Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): revised diagnostic criteria. Amyotroph Lateral Scler Frontotemporal Degener. 2017;18(3-4):153–74. https://doi.org/10.1080/21678421.2016.1267768.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chio A, Ilardi A, Cammarosano S, Moglia C, Montuschi A, Calvo A. Neurobehavioral dysfunction in ALS has a negative effect on outcome and use of PEG and NIV. Neurology. 2012;78(14):1085–9. https://doi.org/10.1212/WNL.0b013e31824e8f53.

    Article  CAS  PubMed  Google Scholar 

  56. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(Pt 9):2456–77. https://doi.org/10.1093/brain/awr179.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lopez-Mora DA, Camacho V, Perez-Perez J, Martinez-Horta S, Fernandez A, Sampedro F, et al. Striatal hypometabolism in premanifest and manifest Huntington's disease patients. Eur J Nucl Med Mol Imaging. 2016;43(12):2183–9. https://doi.org/10.1007/s00259-016-3445-y.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Guidelines working group of EAN, particularly Simona Arcuti and Maurizio Leone, for methodological advice.

Funding

This project was partially funded by the European Association of Nuclear Medicine (EANM) and the European Academy of Neurology (EAN).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Federica Agosta or Marina Boccardi.

Ethics declarations

Conflict of interest

Federica Agosta: is Section Editor of NeuroImage: Clinical and receives personal fees from Elsevier INC; has received speaker fees from Biogen Idec, Novartis, and Excellence in Medical Education; and receives or has received research supports from the Italian Ministry of Health, AriSLA (Fondazione Italiana di Ricerca per la SLA), and the European Research Council.

Daniele Altomare was the recipient of the grant allocated by the European Academy of Neurology (EAN) for data extraction and evidence assessment for the present project.

Cristina Festari: none.

Stefania Orini: none.

Federica Gandolfo: none.

Marina Boccardi: has received funds from the European Association of Nuclear Medicine (EANM) to perform the evidence assessment and the global coordination of the present project. Moreover, she has received research grants from Piramal and served as a paid member of advisory boards for Eli Lilly.

Javier Arbizu: received grants from Eli-Lilly & Co, Piramal and GE Healthcare.

Femke Bouwman: none.

Alexander Drzezga: received grants and non-financial support from Eli-Lilly & Co, Siemens and GE Healthcare; he also received non-financial support from Piramal.

Peter Nestor: none.

Flavio Nobili: received personal fees and non-financial support from GE Healthcare, non-financial support from Eli-Lilly and grants from Chiesi Farmaceutici.

Zuzana Walker: received from G.E. Healthcare grants and tracers, personal fees for consultancy and speakers fee.

Marco Pagani: none.

Ethical approval

This is a review article that does not contain any original study with human participants performed by any of the authors. Ethical approval is shown in each of the quoted original paper.

Informed consent

Not applicable, this is a review article. Informed consent statement is declared in each of the revised paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agosta, F., Altomare, D., Festari, C. et al. Clinical utility of FDG-PET in amyotrophic lateral sclerosis and Huntington’s disease. Eur J Nucl Med Mol Imaging 45, 1546–1556 (2018). https://doi.org/10.1007/s00259-018-4033-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-018-4033-0

Keywords

Navigation