Skip to main content
Log in

Increased evidence for the prognostic value of FDG uptake on late-treatment PET in non-tumour-affected oesophagus in irradiated patients with oesophageal carcinoma

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

18F-FDG uptake in irradiated non-tumour-affected oesophagus (NTO) on restaging PET is a potential surrogate for the measurement of radiation-induced inflammation. Radiation-induced inflammation itself has been shown to be of high prognostic relevance in patients undergoing preoperative radiochemotherapy (RCT) for locally advanced oesophageal cancer. We assessed the prognostic relevance of FDG uptake in the NTO in an independent cohort of patients treated with definitive RCT.

Methods

This retrospective evaluation included 72 patients with oesophageal squamous cell carcinoma treated with definitive RCT with curative intent. All patients underwent pretreatment and restaging FDG PET after receiving a radiation dose of 40–50 Gy. Standardized uptake values (SUVmax/SUVmean), metabolic tumour volume (MTV) and relative changes from pretreatment to restaging PET (∆SUVmax/∆SUVmean) were determined within the tumour and NTO. Univariate Cox regression with respect to overall survival (OS), local control (LC), distant metastases (DM) and treatment failure (TF) was performed. Independence of parameters was tested by multivariate Cox regression.

Results

∆SUVmax NTO and MTV were prognostic factors for all investigated clinical endpoints (OS, LC, DM, TF). Inclusion of clinical and PET tumour parameters in multivariate analysis showed that ∆SUVmax NTO was an independent prognostic factor. Furthermore, multivariate analysis of ∆SUVmax NTO using previously published cut-off values from preoperatively treated patients revealed that ∆SUVmax NTO was independent prognostic factor for OS (HR = 1.88, p = 0.038), TF (HR = 2.11, p = 0.048) and DM (HR = 3.02, p = 0.047).

Conclusion

NTO-related tracer uptake during the course of treatment in patients with oesophageal carcinoma was shown to be of high prognostic relevance. Thus, metabolically activity of NTO measured in terms of ∆SUVmax NTO is a potential candidate for future treatment individualization (i.e. organ preservation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Herskovic A, Martz K, al-Sarraf M, Leichman L, Brindle J, Vaitkevicius V, et al. Combined chemotherapy and radiotherapy compared with radiotherapy alone in patients with cancer of the esophagus. N Engl J Med. 1992;326:1593–8.

    Article  PubMed  CAS  Google Scholar 

  2. Cooper JS, Guo MD, Herskovic A, Macdonald JS, Martenson JA, Al-Sarraf M, et al. Chemoradiotherapy of locally advanced esophageal cancer: long-term follow-up of a prospective randomized trial (RTOG 85-01). Radiation Therapy Oncology Group. JAMA. 1999;281:1623–7.

    Article  PubMed  CAS  Google Scholar 

  3. Sudo K, Xiao L, Wadhwa R, Shiozaki H, Elimova E, Taketa T, et al. Importance of surveillance and success of salvage strategies after definitive chemoradiation in patients with esophageal cancer. J Clin Oncol. 2014;32:3400–5.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Naik KB, Liu Y, Goodman M, Gillespie TW, Pickens A, Force SD, et al. Concurrent chemoradiotherapy with or without surgery for patients with resectable esophageal cancer: an analysis of the National Cancer Data Base. Cancer. 2017;123:3476–85.

    Article  PubMed  CAS  Google Scholar 

  5. Kranzfelder M, Schuster T, Geinitz H, Friess H, Büchler P. Meta-analysis of neoadjuvant treatment modalities and definitive non-surgical therapy for oesophageal squamous cell cancer. Br J Surg. 2011;98:768–83.

    Article  PubMed  CAS  Google Scholar 

  6. van Hagen P, Hulshof MCCM, van Lanschot JJB, Steyerberg EW, van Berge Henegouwen MI, Wijnhoven BPL, et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med. 2012;366:2074–84.

    Article  PubMed  Google Scholar 

  7. Elimova E, Wang X, Etchebehere E, Shiozaki H, Shimodaira Y, Wadhwa R, et al. 18-fluorodeoxy-glucose positron emission computed tomography as predictive of response after chemoradiation in oesophageal cancer patients. Eur J Cancer. 2015;51:2545–52.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Malik V, Lucey JA, Duffy GJ, Wilson L, McNamara L, Keogan M, et al. Early repeated 18F-FDG PET scans during neoadjuvant chemoradiation fail to predict histopathologic response or survival benefit in adenocarcinoma of the esophagus. J Nucl Med. 2010;51:1863–9.

    Article  PubMed  Google Scholar 

  9. Palie O, Michel P, Ménard J-F, Rousseau C, Rio E, Bridji B, et al. The predictive value of treatment response using FDG PET performed on day 21 of chemoradiotherapy in patients with oesophageal squamous cell carcinoma. A prospective, multicentre study (RTEP3). Eur J Nucl Med Mol Imaging. 2013;40:1345–55.

    Article  PubMed  CAS  Google Scholar 

  10. Buscombe J. PET imaging of inflammation. Q J Nucl Med. 2014;58:284–9.

    CAS  Google Scholar 

  11. Hess S, Hansson SH, Pedersen KT, Basu S, Høilund-Carlsen PF. FDG-PET/CT in infectious and inflammatory diseases. PET Clin. 2014;9:497–519. vi–vii

    Article  PubMed  Google Scholar 

  12. Hennies S, Hermann RM, Gaedcke J, Grade M, Hess CF, Christiansen H, et al. Increasing toxicity during neoadjuvant radiochemotherapy as positive prognostic factor for patients with esophageal carcinoma. Dis Esophagus. 2014;27:146–51.

    Article  PubMed  CAS  Google Scholar 

  13. Wolff HA, Raus I, Jung K, Schüler P, Herrmann MK, Hennies S, et al. High-grade acute organ toxicity as a positive prognostic factor in primary radiochemotherapy for anal carcinoma. Int J Radiat Oncol Biol Phys. 2011;79:1467–78.

    Article  PubMed  Google Scholar 

  14. Zschaeck S, Hofheinz F, Zöphel K, Bütof R, Jentsch C, Schmollack J, et al. Increased FDG uptake on late-treatment PET in non-tumour-affected oesophagus is prognostic for pathological complete response and disease recurrence in patients undergoing neoadjuvant radiochemotherapy. Eur J Nucl Med Mol Imaging. 2017;44:1813–22.

    Article  PubMed  CAS  Google Scholar 

  15. Li Y, Lin Q, Luo Z, Zhao L, Zhu L, Sun L, et al. Value of sequential 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) in prediction of the overall survival of esophageal cancer patients treated with chemoradiotherapy. Int J Clin Exp Med. 2015;8:10947–55.

    PubMed  PubMed Central  Google Scholar 

  16. van den Hoff J, Lougovski A, Schramm G, Maus J, Oehme L, Petr J, et al. Correction of scan time dependence of standard uptake values in oncological PET. EJNMMI Res. 2014;4:18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hofheinz F, Pötzsch C, Oehme L, Beuthien-Baumann B, Steinbach J, Kotzerke J, et al. Automatic volume delineation in oncological PET. Evaluation of a dedicated software tool and comparison with manual delineation in clinical data sets. Nuklearmedizin. 2012;51:9–16.

    Article  PubMed  CAS  Google Scholar 

  18. Hofheinz F, Langner J, Petr J, Beuthien-Baumann B, Steinbach J, Kotzerke J, et al. An automatic method for accurate volume delineation of heterogeneous tumors in PET. Med Phys. 2013;40:082503.

    Article  PubMed  CAS  Google Scholar 

  19. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

  20. Brower JV, Chen S, Bassetti MF, Yu M, Harari PM, Ritter MA, et al. Radiation dose escalation in esophageal cancer revisited: a contemporary analysis of the National Cancer Data Base, 2004 to 2012. Int J Radiat Oncol Biol Phys. 2016;96:985–93.

    Article  PubMed  Google Scholar 

  21. de Geus-Oei L-F, Slingerland M. PET-guided treatment algorithms in oesophageal cancer: the promise of the near future! J Thorac Dis. 2017;9:2736–9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ku GY, Kriplani A, Janjigian YY, Kelsen DP, Rusch VW, Bains M, et al. Change in chemotherapy during concurrent radiation followed by surgery after a suboptimal positron emission tomography response to induction chemotherapy improves outcomes for locally advanced esophageal adenocarcinoma. Cancer. 2016;122:2083–90.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vallböhmer D, Hölscher AH, Dietlein M, Bollschweiler E, Baldus SE, Mönig SP, et al. [18F]-Fluorodeoxyglucose-positron emission tomography for the assessment of histopathologic response and prognosis after completion of neoadjuvant chemoradiation in esophageal cancer. Ann Surg. 2009;250:888–94.

    Article  PubMed  Google Scholar 

  24. Piessen G, Petyt G, Duhamel A, Mirabel X, Huglo D, Mariette C. Ineffectiveness of 18F-fluorodeoxyglucose positron emission tomography in the evaluation of tumor response after completion of neoadjuvant chemoradiation in esophageal cancer. Ann Surg. 2013;258:66–76.

    Article  PubMed  Google Scholar 

  25. Metser U, Rashidi F, Moshonov H, Wong R, Knox J, Guindi M, et al. (18)F-FDG-PET/CT in assessing response to neoadjuvant chemoradiotherapy for potentially resectable locally advanced esophageal cancer. Ann Nucl Med. 2014;28:295–303.

    Article  PubMed  CAS  Google Scholar 

  26. Kong F-MS, Ritter T, Quint DJ, Senan S, Gaspar LE, Komaki RU, et al. Consideration of dose limits for organs at risk of thoracic radiotherapy: atlas for lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus. Int J Radiat Oncol Biol Phys. 2011;81:1442–57.

    Article  PubMed  Google Scholar 

  27. Löck S, Perrin R, Seidlitz A, Bandurska-Luque A, Zschaeck S, Zöphel K, et al. Residual tumour hypoxia in head-and-neck cancer patients undergoing primary radiochemotherapy, final results of a prospective trial on repeat FMISO-PET imaging. Radiother Oncol. 2017;124:533–40.

    Article  PubMed  Google Scholar 

  28. Lemarignier C, Di Fiore F, Marre C, Hapdey S, Modzelewski R, Gouel P, et al. Pretreatment metabolic tumour volume is predictive of disease-free survival and overall survival in patients with oesophageal squamous cell carcinoma. Eur J Nucl Med Mol Imaging. 2014;41:2008–16.

    Article  PubMed  CAS  Google Scholar 

  29. Desbordes P, Ruan S, Modzelewski R, Pineau P, Vauclin S, Gouel P, et al. Predictive value of initial FDG-PET features for treatment response and survival in esophageal cancer patients treated with chemo-radiation therapy using a random forest classifier. PLoS One. 2017;12:e0173208.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ma J, Wang Z, Wang C, Chen E, Dong Y, Song Y, et al. Individualized radiation dose escalation based on the decrease in tumor FDG uptake and normal tissue constraints improve survival in patients with esophageal carcinoma. Technol Cancer Res Treat. 2017;16:75–80.

    Article  PubMed  Google Scholar 

  31. Yap WK, Chang YC, Hsieh CH, Chao YK, Chen CC, Shih MC, et al. Favorable versus unfavorable prognostic groups by post-chemoradiation FDG-PET imaging in node-positive esophageal squamous cell carcinoma patients treated with definitive chemoradiotherapy. Eur J Nucl Med Mol Imaging. 2018;45:689–98.

    Article  PubMed  CAS  Google Scholar 

  32. Cremonesi M, Garibaldi C, Timmerman R, Ferrari M, Ronchi S, Grana CM, et al. Interim 18F-FDG-PET/CT during chemo-radiotherapy in the management of oesophageal cancer patients. A systematic review. Radiother Oncol. 2017;125:200–12.

    Article  PubMed  CAS  Google Scholar 

  33. Bütof R, Hofheinz F, Zöphel K, Stadelmann T, Schmollack J, Jentsch C, et al. Prognostic value of pretherapeutic tumor-to-blood standardized uptake ratio in patients with esophageal carcinoma. J Nucl Med. 2015;56:1150–6.

    Article  PubMed  Google Scholar 

  34. van den Hoff J, Oehme L, Schramm G, Maus J, Lougovski A, Petr J, et al. The PET-derived tumor-to-blood standard uptake ratio (SUR) is superior to tumor SUV as a surrogate parameter of the metabolic rate of FDG. EJNMMI Res. 2013;3:77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zschaeck S, Löck S, Leger S, Haase R, Bandurska-Luque A, Appold S, et al. FDG uptake in normal tissues assessed by PET during treatment has prognostic value for treatment results in head and neck squamous cell carcinomas undergoing radiochemotherapy. Radiother Oncol. 2017;122:437–44.

    Article  PubMed  CAS  Google Scholar 

  36. Freilich J, Hoffe SE, Almhanna K, Dinwoodie W, Yue B, Fulp W, et al. Comparative outcomes for three-dimensional conformal versus intensity-modulated radiation therapy for esophageal cancer. Dis Esophagus. 2015;28:352–7.

    Article  PubMed  CAS  Google Scholar 

  37. Wu Z, Xie C, Hu M, Han C, Yi J, Zhou Y, et al. Dosimetric benefits of IMRT and VMAT in the treatment of middle thoracic esophageal cancer: is the conformal radiotherapy still an alternative option? J Appl Clin Med Phys. 2014;15:93–101.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ling TC, Slater JM, Nookala P, Mifflin R, Grove R, Ly AM, et al. Analysis of intensity-modulated radiation therapy (IMRT), proton and 3D conformal radiotherapy (3D-CRT) for reducing perioperative cardiopulmonary complications in esophageal cancer patients. Cancers. 2014;6:2356–68.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ypsilantis P-P, Siddique M, Sohn H-M, Davies A, Cook G, Goh V, et al. Predicting response to neoadjuvant chemotherapy with PET imaging using convolutional neural networks. PLoS One. 2015;10:e0137036.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Nakajo M, Jinguji M, Nakabeppu Y, Nakajo M, Higashi R, Fukukura Y, et al. Texture analysis of 18F-FDG PET/CT to predict tumour response and prognosis of patients with esophageal cancer treated by chemoradiotherapy. Eur J Nucl Med Mol Imaging. 2017;44:206–14.

    Article  PubMed  CAS  Google Scholar 

  41. Niedzielski JS, Yang J, Stingo F, Liao Z, Gomez D, Mohan R, et al. A novel methodology using CT imaging biomarkers to quantify radiation sensitivity in the esophagus with application to clinical trials. Sci Rep. 2017;7:6034.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was partly supported by the Major Projects of Fujian Natural Science Foundation (no. 2008-59-11), the Nature Science Foundation of China (no. 81101066), the Xiamen City Science and Technology Project guidance (3502Z20134004) and the Berliner Krebsgesellschaft (ZSF201720).

Author information

Authors and Affiliations

Authors

Contributions

S.Z. provided ideas for the study. S.Z., Y.L. and F.H. performed the analysis and drafted the manuscript. F.H. designed the figures and calculated the underlying statistics. Y.L., C.L. and W.H. were responsible for treatment, imaging, collection of patient data and follow-up. C.F., P.G., S.Z. and Y.L. provided ideas, supervised the analysis and interpretation of the data and reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sebastian Zschaeck.

Ethics declarations

Conflicts of interest

None.

Ethical approval

The study was approved by the Institutional Ethics Committees.

Informed consent

All patients provided signed written informed consent.

Electronic supplementary material

ESM 1

(PDF 404 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Hofheinz, F., Furth, C. et al. Increased evidence for the prognostic value of FDG uptake on late-treatment PET in non-tumour-affected oesophagus in irradiated patients with oesophageal carcinoma. Eur J Nucl Med Mol Imaging 45, 1752–1761 (2018). https://doi.org/10.1007/s00259-018-3996-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-018-3996-1

Keywords

Navigation