Skip to main content
Log in

Hybrid MR-PET of brain tumours using amino acid PET and chemical exchange saturation transfer MRI

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

PET using radiolabelled amino acids has become a promising tool in the diagnostics of gliomas and brain metastasis. Current research is focused on the evaluation of amide proton transfer (APT) chemical exchange saturation transfer (CEST) MR imaging for brain tumour imaging. In this hybrid MR-PET study, brain tumours were compared using 3D data derived from APT-CEST MRI and amino acid PET using O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET).

Methods

Eight patients with gliomas were investigated simultaneously with 18F-FET PET and APT-CEST MRI using a 3-T MR-BrainPET scanner. CEST imaging was based on a steady-state approach using a B1 average power of 1μT. B0 field inhomogeneities were corrected a Prametric images of magnetisation transfer ratio asymmetry (MTRasym) and differences to the extrapolated semi-solid magnetisation transfer reference method, APT# and nuclear Overhauser effect (NOE#), were calculated. Statistical analysis of the tumour-to-brain ratio of the CEST data was performed against PET data using the non-parametric Wilcoxon test.

Results

A tumour-to-brain ratio derived from APT# and 18F-FET presented no significant differences, and no correlation was found between APT# and 18F-FET PET data. The distance between local hot spot APT# and 18F-FET were different (average 20 ± 13 mm, range 4–45 mm).

Conclusion

For the first time, CEST images were compared with 18F-FET in a simultaneous MR-PET measurement. Imaging findings derived from18F-FET PET and APT CEST MRI seem to provide different biological information. The validation of these imaging findings by histological confirmation is necessary, ideally using stereotactic biopsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28(11):1963–72.

    Article  PubMed  Google Scholar 

  2. Heiss W-D. Clinical impact of amino acid PET in gliomas. J Nucl Med. 2014;55(8):1219–20.

    Article  PubMed  Google Scholar 

  3. McConathy J, Yu W, Jarkas N, et al. Radiohalogenated nonnatural amino acids as PET and SPECT tumor imaging agents. Med Res Rev. 2012;32(4):868–905.

    Article  CAS  PubMed  Google Scholar 

  4. Kratochwil C, Combs SE, Leotta K, et al. Intra-individual comparison of 18F-FET and 18F-DOPA in PET imaging of recurrent brain tumors. Neuro-Oncology. 2014;16(3):434–40.

    Article  CAS  PubMed  Google Scholar 

  5. Dunet V, Rossier C, Buck A, et al. Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and Metaanalysis. J Nucl Med. 2012;53(2):207–14.

    Article  CAS  PubMed  Google Scholar 

  6. Heinzel A, Müller D, Langen K-J, et al. The use of O-(2-18F-fluoroethyl)-L-tyrosine PET for treatment management of bevacizumab and irinotecan in patients with recurrent high-grade glioma: a cost-effectiveness analysis. J Nucl Med. 2013;54(8):1217–22.

    Article  CAS  PubMed  Google Scholar 

  7. Galldiks N, Rapp M, Stoffels G, et al. Response assessment of bevacizumab in patients with recurrent malignant glioma using [18F]Fluoroethyl-L-tyrosine PET in comparison to MRI. Eur J Nucl Med Mol Imaging. 2013;40(1):22–33.

    Article  CAS  PubMed  Google Scholar 

  8. Galldiks N, Stoffels G, Ruge MI, et al. Role of O-(2-18F-fluoroethyl)-L-tyrosine PET as a diagnostic tool for detection of malignant progression in patients with low-grade glioma. J Nucl Med. 2013;54(12):2046–54.

    Article  CAS  PubMed  Google Scholar 

  9. Ceccon G, Lohmann P, Stoffels G, et al. Dynamic O-(2-18F-fluoroethyl)-L-tyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy. Neuro-Oncology. 2017;19(2):281–8.

    PubMed  Google Scholar 

  10. Wolff SD, Balaban RS. NMR imaging of labile proton exchange. J Magn Reson. 1990;86(1):164–9.

    CAS  Google Scholar 

  11. Ward KM, Aletrasa H, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson. 2000;143(1):79–87.

    Article  CAS  PubMed  Google Scholar 

  12. Ward K, Balaban R. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn Reson Med. 2000;802:799–802.

    Article  Google Scholar 

  13. Van Zijl P, Jones C, Ren J, et al. MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proc Natl Acad Sci U S A. 2007;104(11):4359–64.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cai K, Haris M, Singh A, et al. Magnetic resonance imaging of glutamate. Nat Med. 2012;18(2):302–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Walker-Samuel S, Ramasawmy R, Torrealdea F, et al. In vivo imaging of glucose uptake and metabolism in tumors. Nat Med. 2013;19(8):1067–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou J, Payen J, Wilson DA, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med. 2003;9:1085–90.

    Article  CAS  PubMed  Google Scholar 

  17. Jones CK, Schlosser MJ, van Zijl PCM, et al. Amide proton transfer imaging of human brain tumors at 3T. Magn Reson Med. 2006;56(3):585–92.

    Article  PubMed  Google Scholar 

  18. Zhou J, Lal B, Wilson D, et al. Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med. 2003;50(6):1120–6.

    Article  PubMed  Google Scholar 

  19. Tietze A, Blicher J, Mikkelsen IK, et al. Assessment of ischemic penumbra in patients with hyperacute stroke using amide proton transfer (APT) chemical exchange saturation transfer (CEST) MRI. NMR Biomed. 2014;27(2):163–74.

    Article  PubMed  Google Scholar 

  20. Heo H-Y, Jones CK, Hua J, et al. Whole-brain amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging in glioma patients using low-power steady-state pulsed chemical exchange saturation transfer (CEST) imaging at 7T. J Magn Reson Imaging. 2016;44(1):41–50.

    Article  PubMed  Google Scholar 

  21. Sakata A, Okada T, Yamamoto A, et al. Grading glial tumors with amide proton transfer MR imaging: different analytical approaches. J Neuro-Oncol. 2015;122(2):339–48.

    Article  CAS  Google Scholar 

  22. Zhou J, Tryggestad E, Wen Z, et al. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med. 2011;17(1):130–4.

    Article  CAS  PubMed  Google Scholar 

  23. Togao O, Yoshiura T, Keupp J, et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro-Oncology. 2014;16(3):441–8.

    Article  CAS  PubMed  Google Scholar 

  24. Zaiss M, Windschuh J, Goerke S, et al. Downfield-NOE-suppressed amide-CEST-MRI at 7 Tesla provides a unique contrast in human glioblastoma. Magn Reson Med. 2017;77(1):196–208.

    Article  CAS  PubMed  Google Scholar 

  25. Jones CK, Huang A, Xu J, et al. Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T. NeuroImage. 2013;77:114–24.

    Article  PubMed  Google Scholar 

  26. Paech D, Zaiss M, Meissner J-E, et al. Nuclear overhauser enhancement mediated chemical exchange saturation transfer imaging at 7 Tesla in glioblastoma patients. PLoS One. 2014;9(8):e104181.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schlemmer H, Pichler B, Schmand M. Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology. 2008;248(3).

  28. Harris RJ, Cloughesy TF, Liau LM, et al. pH-weighted molecular imaging of gliomas using amine chemical exchange saturation transfer MRI. Neuro-Oncology. 2015;17(11):1514–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harris RJ, Cloughesy TF, Liau LM, et al. Simulation, phantom validation, and clinical evaluation of fast pH-weighted molecular imaging using amine chemical exchange saturation transfer echo planar imaging (CEST-EPI) in glioma at 3 T. NMR Biomed. 2016;29(11):1563–76.

    Article  CAS  PubMed  Google Scholar 

  30. Pauleit D, Floeth F, Hamacher K, et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain. 2005;128(3):678–87.

    Article  PubMed  Google Scholar 

  31. Herzog H, Langen K-J, Weirich C, et al. High resolution BrainPET combined with simultaneous MRI. Nuklearmedizin. 2011;50(2):74–82.

    Article  CAS  PubMed  Google Scholar 

  32. Jones C, Polders D, Hua J. In vivo 3D whole-brain pulsed steady state chemical exchange saturation transfer at 7T. Magn Reson Med. 2012;67(6):1579–89.

    Article  PubMed  Google Scholar 

  33. Stirnberg R, Pflugfelder D, Stöcker T, Shah NJ. High-Resolution 3D-fMRI at 9.4 Tesla with Intrinsically Minimised Geometric Distortions. Proc Intl Soc Mag Reson Med. 2013;2372.

  34. Stirnberg R, Brenner D, Stöcker T, Shah NJ. Rapid fat suppression for three-dimensional echo planar imaging with minimized specific absorption rate. Magn Reson Med. 2016;76(5):1517–23.

    Article  CAS  PubMed  Google Scholar 

  35. Zu Z, Li K, Janve V, et al. Optimizing pulsed-chemical exchange saturation transfer imaging sequences. Magn Reson Med. 2011;66(4):1100–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hamacher K, Coenen HH. Efficient routine production of the 18 F-labelled amino acid O-2-18F-fluoroethyl-L-tyrosine. Appl Radiat Isot. 2002;57:853–6.

    Article  CAS  PubMed  Google Scholar 

  37. Langen K-J, Bartenstein P, Boecker H, et al. German guidelines for brain tumour imaging by PET and SPECT using labelled amino acids. Nuklearmedizin. 2011;50(4):167–73.

    Article  PubMed  Google Scholar 

  38. Kops E, Hautzel H, Herzog H, et al. Comparison of template-based versus CT-based attenuation correction for hybrid MR/PET scanners. IEEE Trans Nucl Sci. 2015;62(5):2115–21.

    Article  CAS  Google Scholar 

  39. Weirich C, Scheins J, Lohmann P, et al. Quantitative PET imaging with the 3T MR-BrainPET. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip. 2013;702:26–8.

    Article  CAS  Google Scholar 

  40. Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5:143–56.

    Article  CAS  PubMed  Google Scholar 

  41. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 2002;17(2):825–41.

    Article  PubMed  Google Scholar 

  42. Zhang Y, Heo H-Y, Lee D-H, et al. Selecting the reference image for registration of CEST series. J Magn Reson Imaging. 2016;43(3):756–61.

    Article  PubMed  Google Scholar 

  43. Abdul-Rahman HS, Gdeisat M, Burton DR, et al. Fast and robust three-dimensional best path phase unwrapping algorithm. Appl Opt. 2007;46(26):6623.

    Article  PubMed  Google Scholar 

  44. Henkelman R, Huang X, Xiang QS, et al. Quantitative interpretation of magnetization transfer. Magn Reson Med. 1993;29(6):759–66.

    Article  CAS  PubMed  Google Scholar 

  45. Morrison C, Henkelman RM. A model for magnetization transfer in tissues. Magn Reson Med. 1995;33(4):475–82.

    Article  CAS  PubMed  Google Scholar 

  46. Heo H-Y, Zhang Y, Jiang S, et al. Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semisolid magnetization transfer reference (EMR) signals: application to a rat glioma model at 4.7 Tesla. Magn Reson Med. 2016;75(1):137–49.

    Article  CAS  PubMed  Google Scholar 

  47. Heo H-Y, Zhang Y, Jiang S, et al. Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semisolid magnetization transfer reference (EMR) signals: II. Comparison of three EMR models and application to human brain glioma at 3T. Magn Reson Med. 2016;75(4):1630–9.

    Article  CAS  PubMed  Google Scholar 

  48. Heo H-Y, Lee D-H, Zhang Y, et al. Insight into the quantitative metrics of chemical exchange saturation transfer (CEST) imaging. Magn Reson Med. 2017;77(5):1853–65.

    Article  CAS  PubMed  Google Scholar 

  49. Lohmann P, Herzog H, Rota Kops E, et al. Dual-time-point O-(2-[(18)F]fluoroethyl)-L-tyrosine PET for grading of cerebral gliomas. Eur Radiol. 2015;25(10):3017–24.

    Article  PubMed  Google Scholar 

  50. Sakata A, Fushimi Y, Okada T, et al. Diagnostic performance between contrast enhancement, proton MR spectroscopy, and amide proton transfer imaging in patients with brain tumors. J Magn Reson Imaging. 2017;46(3):732–9.

    Article  PubMed  Google Scholar 

  51. Albert NL, Winkelmann I, Suchorska B, et al. Early static 18F-FET-PET scans have a higher accuracy for glioma grading than the standard 20-40 min scans. Eur J Nucl Med Mol Imaging. 2016;43(6):1105–14.

    Article  PubMed  Google Scholar 

  52. Langen K-J, Hamacher K, Weckesser M, et al. O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol. 2006;33(3):287–94.

    Article  CAS  PubMed  Google Scholar 

  53. Yan K, Fu Z, Yang C, et al. Assessing amide proton transfer (APT) MRI contrast origins in 9 L Gliosarcoma in the rat brain using proteomic analysis. Mol Imaging Biol. 2015;17(4):479–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sun PZ, Sorensen G. Imaging pH using the chemical exchange saturation transfer (CEST) MRI: correction of concomitant RF irradiation effects to quantify CEST MRI for chemical exchange rate and pH. Magn Reson Med. 2008;60(2):390–7.

    Article  PubMed  Google Scholar 

  55. Zhao X, Wen Z, Huang F, et al. Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T. Magn Reson Med. 2011;66(4):1033–41.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Desmond KL, Stanisz GJ. Understanding quantitative pulsed CEST in the presence of MT. Magn Reson Med. 2012;67(4):979–90.

    Article  PubMed  Google Scholar 

  57. Zaiss M, Kunz P, Goerke S, et al. MR imaging of protein folding in vitro employing nuclear-Overhauser-mediated saturation transfer. NMR Biomed. 2013;26(12):1815–22.

    Article  CAS  PubMed  Google Scholar 

  58. Griffiths J. Are cancer cells acidic? Br J Cancer. 1991;427(3):425-427.

  59. Ross B, Higgins RJ, Boggan JE, et al. 31P NMR spectroscopy of the in vivo metabolism of an intracerebral glioma in the rat. Magn Reson Med. 1988;6(4):403–17.

    Article  CAS  PubMed  Google Scholar 

  60. Goldman S, Levivier M, Pirotte B, et al. Regional methionine and glucose uptake in high-grade gliomas: a comparative study on PET-guided stereotactic biopsy. J Nucl Med. 1997;38(9):1459–62.

    CAS  PubMed  Google Scholar 

  61. Herholz K, Langen K-J, Schiepers C, Mountz JM. Brain tumors. Semin Nucl Med. 2012;42(6):356–70.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kracht LW, Miletic H, Busch S, et al. Delineation of brain tumor extent with [ 11 C ] L -Methionine positron emission Tomography : local comparison with stereotactic histopathology. Clin Cancer Res. 2004;10:7163–70.

    Article  CAS  PubMed  Google Scholar 

  63. Stegmayr C, Bandelow U, Oliveira D, et al. Influence of blood-brain barrier permeability on O-(2-(18)F-fluoroethyl)-L-tyrosine uptake in rat gliomas. Eur J Nucl Med Mol Imaging. 2017;44(3):408–16.

    Article  CAS  PubMed  Google Scholar 

  64. Schmitt B, Zaiss M, Zhou J, Bachert P. Optimization of pulse train presaturation for CEST imaging in clinical scanners. Magn Reson Med. 2011;65(6):1620–9.

    Article  PubMed  Google Scholar 

  65. Dula AN, Asche EM, Landman BA, et al. Development of chemical exchange saturation transfer (CEST) at 7T. Magn Reson Med. 2012;66(3):831–8.

    Article  Google Scholar 

  66. Tse DHY, da Silva NA, Poser BA, Shah NJ. B1+ inhomogeneity mitigation in CEST using parallel transmission. Magn Reson Med. 2017. https://doi.org/10.1002/mrm.26624.

  67. Shah NJ. Multimodal neuroimaging in humans at 9.4 T: a technological breakthrough towards an advanced metabolic imaging scanner. Brain Struct Funct. 2015;220(4):1867–84.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Lutz Tellmann, Silke Frensh, Suzanne Schaden and Kornelia Frey for assistance with the MR-PET measurements. We also thank the PET and MR groups for fruitful discussions.

Funding

This study received support from the COST Action TD1007 (COST-STSM-ECOST-STSM-TD1007-010515-057663). NJS is funded in part by the Helmholtz Alliance ICEMED - Imaging and Curing Environmental Metabolic Diseases, through the Initiative and Network Fund of the Helmholtz Association. Further, NJS is supported in part by TRIMAGE, an EU FP7 project (grant agreement no. 602621).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Jon Shah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed written consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, N.A., Lohmann, P., Fairney, J. et al. Hybrid MR-PET of brain tumours using amino acid PET and chemical exchange saturation transfer MRI. Eur J Nucl Med Mol Imaging 45, 1031–1040 (2018). https://doi.org/10.1007/s00259-018-3940-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-018-3940-4

Keywords

Navigation