Skip to main content

Advertisement

Log in

A score combining baseline neutrophilia and primary tumor SUVpeak measured from FDG PET is associated with outcome in locally advanced cervical cancer

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

We investigated whether a score combining baseline neutrophilia and a PET biomarker could predict outcome in patients with locally advanced cervical cancer (LACC).

Methods

Patients homogeneously treated with definitive chemoradiation plus image-guided adaptive brachytherapy (IGABT) between 2006 and 2013 were analyzed retrospectively. We divided patients into two groups depending on the PET device used: a training set (TS) and a validation set (VS). Primary tumors were semi-automatically delineated on PET images, and 11 radiomics features were calculated (LIFEx software). A PET radiomic index was selected using the time-dependent area under the curve (td-AUC) for 3-year local control (LC). We defined the neutrophil SUV grade (NSG = 0, 1 or 2) score as the number of risk factors among (i) neutrophilia (neutrophil count >7 G/L) and (ii) high risk defined from the PET radiomic index. The NSG prognostic value was evaluated for LC and overall survival (OS).

Results

Data from 108 patients were analyzed. Estimated 3-year LC was 72% in the TS (n = 69) and 65% in the VS (n = 39). In the TS, SUVpeak was selected as the most LC-predictive biomarker (td-AUC = 0.75), and was independent from neutrophilia (p = 0.119). Neutrophilia (HR = 2.6), high-risk SUVpeak (SUVpeak > 10, HR = 4.4) and NSG = 2 (HR = 9.2) were associated with low probability of LC in TS. In multivariate analysis, NSG = 2 was independently associated with low probability of LC (HR = 7.5, p < 0.001) and OS (HR = 5.8, p = 0.001) in the TS. Results obtained in the VS (HR = 5.2 for OS and 3.5 for LC, p < 0.02) were promising.

Conclusion

This innovative scoring approach combining baseline neutrophilia and a PET biomarker provides an independent prognostic factor to consider for further clinical investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers D, et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. Lyon Fr. Int. Agency Res. Cancer [Internet]. 2013. Available from: http://globocan.iarc.fr

  2. Lim MC, Moon E-K, Shin A, Jung K-W, Won Y-J, Seo SS, et al. Incidence of cervical, endometrial, and ovarian cancer in Korea, 1999-2010. J Gynecol Oncol. 2013;24(4):298–302. https://doi.org/10.3802/jgo.2013.24.4.298.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Narayan K, Fisher RJ, Bernshaw D, Shakher R, Hicks RJ. Patterns of failure and prognostic factor analyses in locally advanced cervical cancer patients staged by positron emission tomography and treated with curative intent. Int. J Gynecol Cancer. 2009;19:912–8.

    Article  PubMed  Google Scholar 

  4. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17:1471–4.

    Article  PubMed  Google Scholar 

  5. Herrera FG, Breuneval T, Prior JO, Bourhis J, Ozsahin M. [18F]FDG-PET/CT metabolic parameters as useful prognostic factors in cervical cancer patients treated with chemo-radiotherapy. Radiat Oncol. 2016;11(1):43. https://doi.org/10.1186/s13014-016-0614-x.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Herrera FG, Prior JO. The role of PET/CT in cervical cancer. Front Oncol. 2013;3:34. https://doi.org/10.3389/fonc.2013.00034.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xue F, Lin LL, Dehdashti F, Miller TR, Siegel BA, Grigsby PW. F-18 fluorodeoxyglucose uptake in primary cervical cancer as an indicator of prognosis after radiation therapy. Gynecol Oncol. 2006;101:147–51.

    Article  CAS  PubMed  Google Scholar 

  8. Escande A, Haie-Meder C, Maroun P, Gouy S, Mazeron R, Leroy T, et al. Neutrophilia in locally advanced cervical cancer: a novel biomarker for image-guided adaptive brachytherapy? Oncotarget. 2016;7(46):74886–94. https://doi.org/10.18632/oncotarget.12440.

    PubMed  PubMed Central  Google Scholar 

  9. Mabuchi S, Matsumoto Y, Isohashi F, Yoshioka Y, Ohashi H, Morii E, et al. Pretreatment leukocytosis is an indicator of poor prognosis in patients with cervical cancer. Gynecol Oncol. 2011;122:25–32.

    Article  PubMed  Google Scholar 

  10. Cho Y, Kim KH, Yoon HI, Kim GE, Kim YB. Tumor-related leukocytosis is associated with poor radiation response and clinical outcome in uterine cervical cancer patients. Ann Oncol. 2016;27(11):2067–74. https://doi.org/10.1093/annonc/mdw308.

    Article  CAS  PubMed  Google Scholar 

  11. Mazeron R, Castelnau-Marchand P, Dumas I, del Campo ER, Kom LK, Martinetti F, et al. Impact of treatment time and dose escalation on local control in locally advanced cervical cancer treated by chemoradiation and image-guided pulsed-dose rate adaptive brachytherapy. Radiother Oncol. 2015;114:257–63.

    Article  PubMed  Google Scholar 

  12. Pötter R, Dimopoulos J, Georg P, Lang S, Waldhäusl C, Wachter-Gerstner N, et al. Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother Oncol. 2007;83:148–55.

    Article  PubMed  Google Scholar 

  13. Schmid MP, Franckena M, Kirchheiner K, Sturdza A, Georg P, Dörr W, et al. Distant metastasis in patients with cervical cancer after primary radiotherapy with or without chemotherapy and image guided adaptive brachytherapy. Gynecol Oncol. 2014;133:256–62.

    Article  CAS  PubMed  Google Scholar 

  14. Kim SM, Choi HS, Byun JS. Overall 5-year survival rate and prognostic factors in patients with stage IB and IIA cervical cancer treated by radical hysterectomy and pelvic lymph node dissection. Int J Gynecol Cancer. 2000;10:305–12.

    Article  PubMed  Google Scholar 

  15. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2015;278(2). https://doi.org/10.1148/radiol.2015151169.

  16. Magné N, Chargari C, SanFilippo N, Messai T, Gerbaulet A, Haie-Meder C. Technical aspects and perspectives of the vaginal mold applicator for brachytherapy of gynecologic malignancies. Brachytherapy. 2010;9:274–7.

    Article  PubMed  Google Scholar 

  17. Chargari C, Magné N, Dumas I, Messai T, Vicenzi L, Gillion N, et al. Physics contributions and clinical outcome with 3D-MRI–based pulsed-dose-rate intracavitary brachytherapy in cervical cancer patients. Int J Radiat Oncol. 2009;74:133–9.

    Article  Google Scholar 

  18. Mazeron R, Gilmore J, Dumas I, Champoudry J, Goulart J, Vanneste B, et al. Adaptive 3D image-guided brachytherapy: a strong argument in the debate on systematic radical hysterectomy for locally advanced cervical cancer. Oncologist. 2013;18:415–22.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Reuze S, Orlhac F, Nioche C, Chargari C, Buvat I, Deutsch E, et al. Prediction of cervical cancer recurrence using textural features calculated from 18F–FDG PET images [Internet]. J Nucl Med. 2016;57 supplement 2:422. Available from: http://jnm.snmjournals.org/content/57/supplement_2/422.

  20. Bettinardi V, Presotto L, Rapisarda E, Picchio M, Gianolli L, Gilardi MC. Physical performance of the new hybrid PET∕CT Discovery-690. Med Phys. 2011;38:5394–411.

    Article  CAS  PubMed  Google Scholar 

  21. Bailly C, Bodet-Milin C, Couespel S, Necib H, Kraeber-Bodéré F, Ansquer C, et al. Revisiting the robustness of PET-based textural features in the context of multi-centric trials. PLoS One. 2016;11(7):e0159984. https://doi.org/10.1371/journal.pone.0159984.

  22. Orlhac F, Nioche C, Soussan M, Buvat I. Understanding changes in tumor textural indices in PET: a comparison between visual assessment and index values in simulated and patient data. J Nucl Med. 2016;58(3):387–92. https://doi.org/10.2967/jnumed.116.181859.

    Article  PubMed  Google Scholar 

  23. Nioche C, Orlhac F, Soussan M, Boughdad S, Alberini J, Buvat I. A software for characterizing intra-tumor heterogeneity in multimodality imaging and establishing reference charts. Eur J Nucl Med Mol Imaging. 2016;43:S156–7.

    Google Scholar 

  24. Buvat I, Orlhac F, Soussan M. Tumor texture analysis in PET: where do we stand? J Nucl Med. 2015;56:1642–4.

    Article  CAS  PubMed  Google Scholar 

  25. Orlhac F, Soussan M, Chouahnia K, Martinod E, Buvat I. 18F-FDG PET-derived textural indices reflect tissue-specific uptake pattern in non-small cell lung cancer. PLoS One. 2015;10:e0145063.

  26. Orlhac F, Soussan M, Maisonobe J-A, Garcia CA, Vanderlinden B, Buvat I. Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med. 2014;55(3):414–22. https://doi.org/10.2967/jnumed.113.129858.

    Article  CAS  PubMed  Google Scholar 

  27. Schernberg A, Escande A, Rivin Del Campo E, Ducreux M, Nguyen F, Goere D, et al. Leukocytosis and neutrophilia predicts outcome in anal cancer. Radiother Oncol. 2016;122(1):137–45. https://doi.org/10.1016/j.radonc.2016.12.009.

    Article  PubMed  Google Scholar 

  28. Aerts HJWL. The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol. 2016;2(12):1636–42. https://doi.org/10.1001/jamaoncol.2016.2631.

    Article  PubMed  Google Scholar 

  29. Andreassen CN, Schack LMH, Laursen LV, Alsner J. Radiogenomics – current status, challenges and future directions. Cancer Lett. 2016;382:127–36.

    Article  CAS  PubMed  Google Scholar 

  30. Ho K-C, Fang Y-HD, Chung H-W, Yen T-C, Ho T-Y, Chou H-H, et al. A preliminary investigation into textural features of intratumoral metabolic heterogeneity in (18)F-FDG PET for overall survival prognosis in patients with bulky cervical cancer treated with definitive concurrent chemoradiotherapy. Am J Nucl Med Mol Imaging. 2016;6:166–75.

    PubMed  PubMed Central  Google Scholar 

  31. Barwick TD, Taylor A, Rockall A. Functional imaging to predict tumor response in locally advanced cervical cancer. Curr Oncol Rep. 2013;15:549–58.

    Article  PubMed  Google Scholar 

  32. Leseur J, Roman-Jimenez G, Devillers A, Ospina-Arango JD, Williaume D, Castelli J, et al. Pre- and per-treatment 18F-FDG PET/CT parameters to predict recurrence and survival in cervical cancer. Radiother Oncol. 2016;120:512–8.

    Article  PubMed  Google Scholar 

  33. Pan L, Cheng J, Zhou M, Yao Z, Zhang Y. The SUVmax (maximum standardized uptake value for F-18 fluorodeoxyglucose) and serum squamous cell carcinoma antigen (SCC-ag) function as prognostic biomarkers in patients with primary cervical cancer. J Cancer Res Clin Oncol. 2012;138:239–46.

    Article  CAS  PubMed  Google Scholar 

  34. Kidd EA, El Naqa I, Siegel BA, Dehdashti F, Grigsby PW. FDG-PET-based prognostic nomograms for locally advanced cervical cancer. Gynecol Oncol. 2012;127:136–40.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hong JH, Min KJ, Lee JK, So KA, Jung US, Kim S, et al. Prognostic value of the sum of metabolic tumor volume of primary tumor and lymph nodes using 18F-FDG PET/CT in patients with cervical cancer. Medicine (Baltimore). 2016;95:e2992.

    Article  CAS  Google Scholar 

  36. Mu W, Chen Z, Liang Y, Shen W, Yang F, Dai R, et al. Staging of cervical cancer based on tumor heterogeneity characterized by texture features on 18 F-FDG PET images. Phys Med Biol. 2015;60:5123–39.

    Article  PubMed  Google Scholar 

  37. Yan J, Chu-Shern JL, Loi HY, Khor LK, Sinha AK, Quek ST, et al. Impact of image reconstruction settings on texture features in 18F-FDG PET. J Nucl Med. 2015;56:1667–73.

    Article  CAS  PubMed  Google Scholar 

  38. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85–95.

    Article  CAS  PubMed  Google Scholar 

  39. Coffelt SB, Wellenstein MD, de Visser KE. Neutrophils in cancer: neutral no more. Nat Rev Cancer. 2016;16:431–46.

    Article  CAS  PubMed  Google Scholar 

  40. Wu J, Chen M, Liang C, Su W. Prognostic value of the pretreatment neutrophil-to-lymphocyte ratio in cervical cancer: a meta-analysis and systematic review. Oncotarget. 2017;8(8):13400–12. https://doi.org/10.18632/oncotarget.14541.

    PubMed  PubMed Central  Google Scholar 

  41. Gregory AD, McGarry HA. Tumor-associated Neutrophils: new targets for cancer therapy. Cancer Res. 2011;71:2411–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Robert.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

For this type of study formal consent is not required (retrospective study).

Electronic supplementary material

ESM 1

(DOCX 228 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schernberg, A., Reuze, S., Orlhac, F. et al. A score combining baseline neutrophilia and primary tumor SUVpeak measured from FDG PET is associated with outcome in locally advanced cervical cancer. Eur J Nucl Med Mol Imaging 45, 187–195 (2018). https://doi.org/10.1007/s00259-017-3824-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-017-3824-z

Keywords

Navigation