Skip to main content

Advertisement

Log in

Role of interim 18F-FDG-PET/CT for the early prediction of clinical outcomes of Non-Small Cell Lung Cancer (NSCLC) during radiotherapy or chemo-radiotherapy. A systematic review

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Background

Non-Small Cell Lung Cancer (NSCLC) is characterized by aggressiveness and includes the majority of thorax malignancies. The possibility of early stratification of patients as responsive and non-responsive to radiotherapy with a non-invasive method is extremely appealing. The distribution of the Fluorodeoxyglucose (18F–FDG) in tumours, provided by Positron-Emission-Tomography (PET) images, has been proved to be useful to assess the initial staging of the disease, recurrence, and response to chemotherapy and chemo-radiotherapy (CRT).

Objectives

In the last years, particular efforts have been focused on the possibility of using ad interim 18F–FDG PET (FDGint) to evaluate response already in the course of radiotherapy. However, controversial findings have been reported for various malignancies, although several results would support the use of FDGint for individual therapeutic decisions, at least in some pathologies. The objective of the present review is to assemble comprehensively the literature concerning NSCLC, to evaluate where and whether FDGint may offer predictive potential.

Methods

Several searches were completed on Medline and the Embase database, combining different keywords. Original papers published in the English language from 2005 to 2016 with studies involving FDGint in patients affected by NSCLC and treated with radiation therapy or chemo-radiotherapy only were chosen.

Results

Twenty-one studies out of 970 in Pubmed and 1256 in Embase were selected, reporting on 627 patients.

Conclusion

Certainly, the lack of univocal PET parameters was identified as a major drawback, while standardization would be required for best practice. In any case, all these papers denoted FDGint as promising and a challenging examination for early assessment of outcomes during CRT, sustaining its predictivity in lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2015;65:5–29.

    Article  PubMed  Google Scholar 

  2. Crinò L, Weder W, van Meerbeeck J, Felip E. ESMO guidelines working group. Early stage and locally advanced (non-metastatic) non-small-cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21(Suppl 5):v103–15.

    Article  PubMed  Google Scholar 

  3. Gerber DE, Gandhi L, Costa DB. Management and future directions in non-small cell lung cancer with known activating mutations. Am Soc Clin Oncol Educ Book 2014;e353-e365

  4. Gridelli C, Balducci L, Ciardiello F, Di Maio M, Felip E, Langer C, et al. Treatment of advanced non-small-cell lung cancer with epidermal growth factor receptor (EGFR) mutation or ALK gene rearrangement: results of an international expert panel meeting of the Italian Association of Thoracic Oncology. Clin Lung Cancer. 2014;15:173–81.

    Article  CAS  PubMed  Google Scholar 

  5. Aupérin A, Le Péchoux C, Rolland E, Curran WJ, Furuse K, Fournel P, et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol. 2010;28(13):2181–90.

    Article  PubMed  Google Scholar 

  6. Eberhardt WE, De Ruysscher D, Weder W, Le Péchoux C, De Leyn P, Hoffmann H, et al. 2nd ESMO consensus conference in lung cancer: locally advanced stage III non-small-cell lung cancer. Ann Oncol. 2015;26:1573–88.

    Article  CAS  PubMed  Google Scholar 

  7. Ambrosini V, Nicolini S, Caroli P, Nanni C, Massaro A, Marzola MC, et al. PET/CT imaging in different types of lung cancer: an overview. Eur J Radiol. 2012;81:988–1001.

    Article  PubMed  Google Scholar 

  8. Lee P, Kupelian P, Czernin J, Ghosh P. Current concepts in F18 FDG PET/CT-based radiation therapy planning for lung cancer. Front Oncol. 2012;11:2–7.

    Google Scholar 

  9. Konert T, Vogel W, Mac Manus MP, Nestle U, Belderbos J, Grégoire V, et al. PET/CT imaging for target volume delineation in curative intent radiotherapy of non-small cell lung cancer: IAEA consensus report 2014. Radiother Oncol. 2015;116:27–34.

    Article  PubMed  Google Scholar 

  10. Smith TA. FDG uptake, tumour characteristics and response to therapy: a review. Nucl Med Commun. 1998;19:97–105.

    Article  CAS  PubMed  Google Scholar 

  11. van Gool MH, Aukema TS, Hartemink KJ, Valdés Olmos RA, van Tinteren H, Klomp HM. FDG-PET/CT response evaluation during EGFR-TKI treatment in patients with NSCLC. World J Radiol. 2014;6:392–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Skoura E, Datseris IE, Platis I, Oikonomopoulos G, Syrigos KN. Role of positron emission tomography in the early prediction of response to chemotherapy in patients with non-small-cell lung cancer. Clin Lung Cancer. 2012;13:181–7.

    Article  PubMed  Google Scholar 

  13. Min M, Lin P, Lee MT, Shon IH, Lin M, Forstner D, et al. Prognostic role of metabolic parameters of (18)F-FDG PET-CT scan performed during radiation therapy in locally advanced head and neck squamous cell carcinoma. Eur J Nucl Med Mol Imaging. 2015;42:1984–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bentzen SM. Theragnostic imaging for radiation oncology: dose-painting by numbers. Lancet Oncol. 2005;6:112–7.

    Article  PubMed  Google Scholar 

  15. Meijer G, Steenhuijsen J, Bal M, De Jaeger K, Schuring D, Theuws J. Dose painting by contours versus dose painting by numbers for stage II/III lung cancer: practical implications of using a broad or sharp brush. Radiother Oncol. 2011;100:396–401.

    Article  PubMed  Google Scholar 

  16. Janssen MH, Öllers MC, van Stiphout RG, Riedl RG, van den Bogaard J, Buijsen J, et al. PET-based treatment response evaluation in rectal cancer: prediction and validation. Int J Radiat Oncol Biol Phys. 2012;82:871–6.

    Article  PubMed  Google Scholar 

  17. Cuenca X, Hennequin C, Hindié E, Rivera S, Vercellino L, Baruch-Hennequin V, et al. Evaluation of early response to concomitant chemoradiotherapy by interim 18F-FDG PET/CT imaging in patients with locally advanced oesophageal carcinomas. EJNMMI Res. 2013;40:477–85.

    CAS  Google Scholar 

  18. Min M, Lin P, Lee M, Ho Shon I, Lin M, Forstner D, et al. Prognostic value of 2-(18)F Fluoro-2-deoxy-D-glucose positron emission tomography-computed tomography scan carried out during and after radiation therapy for head and neck cancer using visual therapy response interpretation criteria. Clin Oncol (R Coll Radiol). 2016;28:393–401.

  19. Huang W, Zhou T, Ma L, Sun H, Gong H, Wang J, et al. Standard uptake value and metabolic tumor volume of 18F-FDG PET/CT predict short-term outcome early in the course of chemoradiotherapy in advanced non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2011;38:1628–35.

    Article  CAS  PubMed  Google Scholar 

  20. Usmanij EA, de Geus-Oei LF, Troost EG, Peters-Bax L, van der Heijden EH, Kaanders JH, et al. 18F-FDG PET early response evaluation of locally advanced non-small cell lung cancer treated with concomitant chemoradiotherapy. J Nucl Med. 2013;54:1528–34.

    Article  CAS  PubMed  Google Scholar 

  21. Ding XP, Zhang J, Li BS, Li HS, Wang ZT, Yi Y, et al. Feasibility of shrinking field radiation therapy through 18F-FDG PET/CT after 40 Gy for stage III non-small cell lung cancers. Asian Pac J Cancer Prev. 2012;13:319–23.

    Article  PubMed  Google Scholar 

  22. Bampo C, Alessi A, Fantini S, Bertarelli G, de Braud F, Bombardieri E, et al. Is the standardized uptake value of FDG-PET/CT predictive of pathological complete response in locally advanced rectal cancer treated with capecitabine-based neoadjuvant chemoradiation? Oncology. 2013;84:191–9.

    Article  CAS  PubMed  Google Scholar 

  23. Malik V, Lucey JA, Duffy GJ, Wilson L, McNamara L, Keogan M, et al. Early repeated 18F-FDG PET scans during neoadjuvant chemoradiation fail to predict histopathologic response or survival benefit in adenocarcinoma of the esophagus. J Nucl Med. 2010;51:1863–9.

    Article  PubMed  Google Scholar 

  24. Ceulemans G, Voordeckers M, Farrag A, Verdries D, Storme G, Everaert H. Can 18-FDG-PET during radiotherapy replace post-therapy scanning for detection/demonstration of tumor response in head-and-neck cancer? Int J Radiat Oncol Biol Phys. 2011;81:938–42.

  25. De Ruysscher D, Houben A, Aerts HJ, Dehing C, Wanders R, Ollers M, et al. Increased (18)F-deoxyglucose uptake in the lung during the first weeks of radiotherapy is correlated with subsequent radiation-induced lung toxicity (RILT): a prospective pilot study. Radiother Oncol. 2009;91:415–20.

    Article  PubMed  Google Scholar 

  26. Edet-Sanson A, Dubray B, Doyeux K, Hapdey S, Modzelewski R, Bohn P, et al. Serial assessment of FDG-PET FDG uptake and functional volume during radiotherapy (RT) in patients with non-small cell lung cancer (NSCLC). Radiother Oncol. 2012;102:251–7.

    Article  PubMed  Google Scholar 

  27. Thorwarth D. Hypoxia PET imaging for delineation and response assessment during radiotherapy. Radiat. Oncol. 2015;S174:SP-0362.

    Google Scholar 

  28. Vera P, Bohn P, Edet-Sanson A, Salles A, Hapdey S, Gardin I, et al. Simultaneous positron emission tomography (PET) assessment of metabolism with 18F-fluoro-2-deoxy-d-glucose (FDG), proliferation with 18F-fluoro-thymidine (FLT), and hypoxia with 18fluoro-misonidazole (F-miso) before and during radiotherapy in patients with non-small-cell lung cancer (NSCLC): a pilot study. Radiother Oncol. 2011;98(1):109–16.

    Article  CAS  PubMed  Google Scholar 

  29. van Westreenen HL, Cobben DC, Jager PL, van Dullemen HM, Wesseling J, Elsinga PH, et al. Comparison of 18F-FLT PET and 18F-FDG PET in esophageal cancer. J Nucl Med. 2005;46:400–4.

    PubMed  Google Scholar 

  30. Jeong JU, Chung WK, Nam TK, Song JY, Yoon MS, Kim YC, et al. Early metabolic response on 18F-fluorodeoxyglucose-positron-emission tomography/computed tomography after concurrent chemoradiotherapy for advanced stage III non-small cell lung cancer is correlated with local tumor control and survival. Anticancer Res. 2014;34:2517–23.

    PubMed  Google Scholar 

  31. Machtay M, Duan F, Siegel BA, Snyder BS, Gorelick JJ, Reddin JS, et al. Prediction of survival by [18F]fluorodeoxyglucose positron emission tomography in patients with locally advanced non-small-cell lung cancer undergoing definitive chemoradiation therapy: results of the ACRIN 6668/RTOG 0235 trial. J Clin Oncol. 2013;31:3823–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xiang ZL, Erasmus J, Komaki R, Cox JD, Chang JY. FDG uptake correlates with recurrence and survival after treatment of unresectable stage III non-small cell lung cancer with high-dose proton therapy and chemotherapy. Radiat Oncol. 2012;7:144.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62:1006–12.

    Article  PubMed  Google Scholar 

  34. van Baardwijk A, Bosmans G, Dekker A, van Kroonenburgh M, Boersma L, Wanders S, et al. Time trends in the maximal uptake of FDG on PET scan during thoracic radiotherapy. A prospective study in locally advanced non-small cell lung cancer (NSCLC) patients. Radiother Oncol. 2007;82:145–52.

    Article  PubMed  Google Scholar 

  35. Giovacchini G, Picchio M, Schipani S, Landoni C, Gianolli L, Bettinardi V, et al. Changes in glucose metabolism during and after radiotherapy in non-small cell lung cancer. Tumori. 2009;95:177–84.

    PubMed  Google Scholar 

  36. Massaccesi M, Calcagni ML, Spitilli MG, Cocciolillo F, Pelligrò F, Bonomo L, et al. 18F-FDG PET-CT during chemo-radiotherapy in patients with non-small cell lung cancer: the early metabolic response correlates with the delivered radiation dose. Radiat Oncol. 2012;7:106.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kong FM, Frey KA, Quint LE, Ten Haken RK, Hayman JA, Kessler M, et al. A pilot study of [18F]fluorodeoxyglucose positron emission tomography scans during and after radiation-based therapy in patients with non-small-cell lung cancer. J Clin Oncol. 2007;25:3116–23.

    Article  PubMed  Google Scholar 

  38. Kim S, Oh SW, Kim JS, Kim KH, Kim YK. Prediction of response by FDG PET early during concurrent chemoradiotherapy for locally advanced non-small cell lung cancer. Radiat Oncol J. 2014;32:231–7.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang HQ, Yu JM, Meng X, Yue JB, Feng R, Ma L. Prognostic value of serial [18F]fluorodeoxyglucose PET-CT uptake in stage III patients with non-small cell lung cancer treated by concurrent chemoradiotherapy. Eur J Radiol. 2011;77:92–6.

    Article  PubMed  Google Scholar 

  40. van Elmpt W, Ollers M, Dingemans AM, Lambin P, De Ruysscher D. Response assessment using 18F-FDG PET early in the course of radiotherapy correlates with survival in advanced-stage non-small cell lung cancer. J Nucl Med. 2012;53:1514–20.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Huang W, Fan M, Liu B, Fu Z, Zhou T, Zhang Z, et al. Value of metabolic tumor volume on repeated 18F-FDG PET/CT for early prediction of survival in locally advanced non-small cell lung cancer treated with concurrent chemoradiotherapy. J Nucl Med. 2014;55:1584–90.

    Article  CAS  PubMed  Google Scholar 

  42. Vera P, Mezzani-Saillard S, Edet-Sanson A, Ménard JF, Modzelewski R, Thureau S, et al. FDG PET during radiochemotherapy is predictive of outcome at 1 year in non-small-cell lung cancer patients: a prospective multicentre study (RTEP2). Eur J Nucl Med Mol Imaging. 2014;41:1057–65.

    Article  CAS  PubMed  Google Scholar 

  43. Yossi S, Krhili S, Muratet JP, Septans AL, Campion L, Denis F, et al. Early assessment of metabolic response by 18F-FDG PET during concomitant radiochemotherapy of non-small cell lung carcinoma is associated with survival: a retrospective single-center study. Clin Nucl Med. 2015;40:e215–21.

    Article  PubMed  Google Scholar 

  44. Dong X, Sun X, Sun L, Maxim PG, Xing L, Huang Y, et al. Early change in metabolic tumor heterogeneity during chemoradiotherapy and its prognostic value for patients with locally advanced non-small cell lung cancer. PLoS One. 2016;11(6):e0157836.

  45. Grootjans W, Usmanij EA, Oyen WJ, van der Heijden EH, Visser EP, Visvikis D, et al. Performance of automatic image segmentation algorithms for calculating total lesion glycolysis for early response monitoring in non-small cell lung cancer patients during concomitant chemoradiotherapy. Radiother Oncol. 2016;119(3):473–9.

    Article  PubMed  Google Scholar 

  46. Gillham C, Zips D, Pönisch F, Evers C, Enghardt W, Abolmaali N, et al. Additional PET/CT in week 5-6 of radiotherapy for patients with stage III non-small cell lung cancer as a means of dose escalation planning? Radiother Oncol. 2008;88:335–41.

    Article  PubMed  Google Scholar 

  47. Feng M, Kong FM, Gross M, Fernando S, Hayman JA, Ten Haken RK. Using fluorodeoxyglucose positron emission tomography to assess tumor volume during radiotherapy for non-small-cell lung cancer and its potential impact on adaptive dose escalation and normal tissue sparing. Int J Radiat Oncol Biol Phys. 2009;73:1228–34.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kelsey CR, Christensen JD, Chino JP, Adamson J, Ready NE, Perez BA. Adaptive planning using positron emission tomography for locally advanced lung cancer: a feasibility study. Pract Radiat Oncol. 2016;6:96–104.

    Article  PubMed  Google Scholar 

  49. Yap ML, Sun A, Higgins J, Clarke K, Marshall A, Becker N, et al. Adaptive dose escalation using serial four-dimensional positron emission tomography/computed tomography scans during radiotherapy for locally advanced non-small cell lung cancer. Clin Oncol (R Coll Radiol). 2016;28(12):e199–205.

    Article  CAS  Google Scholar 

  50. Shirvani SM, Jiang J, Gomez DR, Chang JY, Buchholz TA, Smith BD. Intensity modulated radiotherapy for stage III non-small cell lung cancer in the United States: predictors of use and association with toxicities. Lung Cancer. 2013;82:252–9.

    Article  PubMed  Google Scholar 

  51. Jegadeesh N, Liu Y, Gillespie T, Fernandez F, Ramalingam S, Mikell J, et al. Evaluating Intensity-Modulated Radiation Therapy in Locally Advanced Non-Small-Cell Lung Cancer: Results From the National Cancer Data Base. Clin Lung Cancer. 2016;17:398–405.

  52. Szyszko TA, Yip C, Szlosarek P, Goh V, Cook GJ. The role of new PET tracers for lung cancer. Lung Cancer. 2016;94:7–14.

    Article  PubMed  Google Scholar 

  53. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50:122S–5S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liao S, Penney BC, Zhang H, Suzuki K, Pu Y. Prognostic value of the quantitative metabolic volumetric measurement on 18F-FDG PET/CT in stage IV nonsurgical small-cell lung cancer. Acad Radiol. 2012;19:69–77.

    Article  PubMed  Google Scholar 

  55. Hatt M, Cheze-le Rest C, van Baardwijk A, Lambin P, Pradier O, Visvikis D. Impact of tumor size and tracer uptake heterogeneity in (18)F-FDG PET and CT non-small cell lung cancer tumor delineation. J Nucl Med. 2011;52(11):1690–7.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cook GJ, Yip C, Siddique M, Goh V, Chicklore S, Roy A, et al. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med. 2013;54(1):19–26.

    Article  PubMed  Google Scholar 

  57. Ohri N, Duan F, Snyder BS, Wei B, Machtay M, Alavi A, et al. Pretreatment 18F-FDG PET textural features in locally advanced non-small cell lung cancer: secondary analysis of ACRIN 6668/RTOG 0235. J Nucl Med. 2016;57(6):842–8.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shankar LK, Hoffman JM, Bacharach S, Graham MM, Karp J, Lammertsma AA, et al. Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute trials. J Nucl Med. 2006;47:1059–66.

    CAS  PubMed  Google Scholar 

  59. Boellaard R, Oyen WJ, Hoekstra CJ, Hoekstra OS, Visser EP, Willemsen AT, et al. The Netherlands protocol for standardization and quantification of FDG whole body PET studies in multi-centre trials. Eur J Nucl Med Mol Imaging. 2008;35:2320–33.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. Maria Dolors Del Hoyo Pastor for her kind support and constructive discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Cremonesi.

Ethics declarations

Funding

This study was not funded.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

All the authors declare they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cremonesi, M., Gilardi, L., Ferrari, M.E. et al. Role of interim 18F-FDG-PET/CT for the early prediction of clinical outcomes of Non-Small Cell Lung Cancer (NSCLC) during radiotherapy or chemo-radiotherapy. A systematic review. Eur J Nucl Med Mol Imaging 44, 1915–1927 (2017). https://doi.org/10.1007/s00259-017-3762-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-017-3762-9

Keywords

Navigation