Skip to main content
Log in

Effects of arm truncation on the appearance of the halo artifact in 68Ga-PSMA-11 (HBED-CC) PET/MRI

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

PSMA ligand imaging with hybrid PET/MRI scanners could be an integral part of the clinical routine in the future. However, the first study about this novel method revealed a severe photopenic artifact (“halo artifact”) around the urinary bladder causing significantly reduced tumor visibility. The aim of this evaluation was to analyze the role of arm truncation on the appearance of the halo artifact in 68Ga-PSMA-11 PET/MRI hypothesizing that this influences the appearance.

Methods

Twenty-seven consecutive patients were subjected to 68Ga-PSMA-11 PET/CT (1 h p.i.) followed by PET/MRI (3 h p.i.). PET/MRI was first started with scans of the abdomen to pelvis with arms positioned up above the head. Immediately thereafter, additional scans from the pelvis to abdomen were conducted with arms positioned down beside the trunk. All investigations were first analyzed separately and then compared with respect to tumor detection and tumor uptake (SUV) as well as the presence and intensity of the halo artifact. The Wilcoxon signed rank test was used to determine statistical differences including Bonferroni correction.

Results

The halo was significantly reduced if the arms were elevated. Lesions inside the halo artifact (n = 16) demonstrated significantly increased SUVmean (p = 0.0007) and SUVmax (p = 0.0024) with arms positioned up. The halo appearance and intensity was not dependent on the total activity and activity concentration of the urinary bladder.

Conclusion

Positioning the arms down was shown to be significantly associated with the appearance of the halo artifact in PET/MRI. Positioning the arms up above the head can significantly reduce the halo artifact, thereby detecting more tumor lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kosuri S, Akhtar NH, Smith M, Osborne JR, Tagawa ST. Review of salvage therapy for biochemically recurrent prostate cancer: the role of imaging and rationale for systemic salvage targeted anti-prostate-specific membrane antigen radioimmunotherapy. Adv Urol. 2012;2012:921674.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Afshar-Oromieh A, Haberkorn U, Eder M, Eisenhut M, Zechmann CM. [68Ga]gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18F-FECH. Eur J Nucl Med Mol Imaging. 2012;39:1085–6.

    Article  CAS  PubMed  Google Scholar 

  3. Afshar-Oromieh A, Malcher A, Eder M, Eisenhut M, Linhart HG, Hadaschik BA, et al. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging. 2013;40:486–95.

    Article  CAS  PubMed  Google Scholar 

  4. Afshar-Oromieh A, Zechmann CM, Malcher A, Eder M, Eisenhut M, Linhart HG, et al. Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2014;41:11–20.

    Article  CAS  PubMed  Google Scholar 

  5. Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, et al. The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42:197–209.

    Article  CAS  PubMed  Google Scholar 

  6. Eiber M, Maurer T, Souvatzoglou M, Beer AJ, Ruffani A, Haller B, et al. Evaluation of hybrid 68Ga-PSMA ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med Off Publ Soc Nucl Med. 2015;56:668–74.

    Google Scholar 

  7. Morigi JJ, Stricker PD, van Leeuwen PJ, Tang R, Ho B, Nguyen Q, et al. Prospective comparison of 18F-Fluoromethylcholine versus 68Ga-PSMA PET/CT in prostate cancer patients who have rising PSA after curative treatment and are being considered for targeted therapy. J Nucl Med Off Publ Soc Nucl Med. 2015;56:1185–90.

    CAS  Google Scholar 

  8. Schwenck J, Rempp H, Reischl G, Kruck S, Stenzl A, Nikolaou K, et al. Comparison of (68)Ga-labelled PSMA-11 and (11)C-choline in the detection of prostate cancer metastases by PET/CT. Eur J Nucl Med Mol Imaging. 2017;44:92–101.

    Article  CAS  PubMed  Google Scholar 

  9. Roethke MC, Kuru TH, Afshar-Oromieh A, Schlemmer H-P, Hadaschik BA, Fenchel M. Hybrid positron emission tomography-magnetic resonance imaging with gallium 68 prostate-specific membrane antigen tracer: a next step for imaging of recurrent prostate cancer-preliminary results. Eur Urol. 2013;64:862–4.

    Article  PubMed  Google Scholar 

  10. Afshar-Oromieh A, Haberkorn U, Schlemmer HP, Fenchel M, Eder M, Eisenhut M, et al. Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: initial experience. Eur J Nucl Med Mol Imaging. 2014;41:887–97.

    Article  CAS  PubMed  Google Scholar 

  11. Eiber M, Nekolla SG, Maurer T, Weirich G, Wester HJ, Schwaiger M. Ga-PSMA PET/MR with multimodality image analysis for primary prostate cancer. Abdom Imaging [Internet]. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=25412869.

  12. Eiber M, Weirich G, Holzapfel K, Souvatzoglou M, Haller B, Rauscher I, et al. Simultaneous (68)Ga-PSMA HBED-CC PET/MRI improves the localization of primary prostate cancer. Eur Urol. 2016;70:829–36.

    Article  CAS  PubMed  Google Scholar 

  13. Freitag MT, Radtke JP, Hadaschik BA, Kopp-Schneider A, Eder M, Kopka K, et al. Comparison of hybrid (68)Ga-PSMA PET/MRI and (68)Ga-PSMA PET/CT in the evaluation of lymph node and bone metastases of prostate cancer. Eur J Nucl Med Mol Imaging. 2016;43:70–83.

    Article  CAS  PubMed  Google Scholar 

  14. Freitag MT, Radtke JP, Afshar-Oromieh A, Roethke MC, Hadaschik BA, Gleave M, et al. Local recurrence of prostate cancer after radical prostatectomy is at risk to be missed in (68)Ga-PSMA-11-PET of PET/CT and PET/MRI: comparison with mpMRI integrated in simultaneous PET/MRI. Eur J Nucl Med Mol Imaging. 2016.

  15. Blumhagen JO, Braun H, Ladebeck R, Fenchel M, Faul D, Scheffler K, et al. Field of view extension and truncation correction for MR-based human attenuation correction in simultaneous MR/PET imaging. Med Phys. 2014;41:022303.

    Article  PubMed  Google Scholar 

  16. Eder M, Neels O, Müller M, Bauder-Wüst U, Remde Y, Schäfer M, et al. Novel preclinical and radiopharmaceutical aspects of [68Ga]Ga-PSMA-HBED-CC: a new PET tracer for imaging of prostate cancer. Pharm Basel Switz. 2014;7:779–96.

    CAS  Google Scholar 

  17. Blumhagen JO, Ladebeck R, Fenchel M, Scheffler K. MR-based field-of-view extension in MR/PET: B0 homogenization using gradient enhancement (HUGE). Magn Reson Med. 2013;70:1047–57.

    Article  PubMed  Google Scholar 

  18. Afshar-Oromieh A, Hetzheim H, Kübler W, Kratochwil C, Giesel FL, Hope TA, et al. Radiation dosimetry of (68)Ga-PSMA-11 (HBED-CC) and preliminary evaluation of optimal imaging timing. Eur J Nucl Med Mol Imaging. 2016;43:1611–20.

    Article  CAS  PubMed  Google Scholar 

  19. Afshar-Oromieh A, Sattler LP, Mier W, Hadaschik B, Debus J, Holland-Letz T, et al. The clinical impact of additional late PET/CT imaging with 68Ga-PSMA-11 (HBED-CC) in the diagnosis of prostate cancer. J Nucl Med Off Publ Soc Nucl Med. 2017.

  20. Gaertner FC, Beer AJ, Souvatzoglou M, Eiber M, Furst S, Ziegler SI, et al. Evaluation of feasibility and image quality of 68Ga-DOTATOC positron emission tomography/magnetic resonance in comparison with positron emission tomography/computed tomography in patients with neuroendocrine tumors. Investig Radiol. 2013;48:263–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Afshar-Oromieh.

Ethics declarations

Conflicts of interest

Ali Afshar-Oromieh has received honoraria from Siemens Healthcare for one educational talk. All other authors declare that they have no conflicts of interest.

Ethical approval

This retrospective study was approved by the local ethics committee (S-485/2012, S-638/2013) and was conducted in agreement with the Declaration of Helsinki. All patients gave written informed consent.

Electronic supplementary material

Supplementary Figure 1

The volume of the urinary bladder was measured by drawing a 90% isocontour VOI around the urinary bladder. The software automatically calculated the activity concentration as well. (GIF 77 kb)

High-resolution image (TIFF 621 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afshar-Oromieh, A., Wolf, M., Haberkorn, U. et al. Effects of arm truncation on the appearance of the halo artifact in 68Ga-PSMA-11 (HBED-CC) PET/MRI. Eur J Nucl Med Mol Imaging 44, 1636–1646 (2017). https://doi.org/10.1007/s00259-017-3718-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-017-3718-0

Keywords

Navigation