Skip to main content

Advertisement

Log in

Response assessment of bevacizumab therapy in GBM with integrated 11C-MET-PET/MRI: a feasibility study

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Background

The objective of this study was to evaluate the potential of integrated 11C-MET PET/MR for response assessment of relapsed glioblastoma (GBM) receiving bevacizumab treatment.

Methods

Eleven consecutive patients with relapsed GBM were enrolled for an integrated 11C-MET PET/MRI at baseline and at follow-up. Treatment response for MRI was evaluated according to Response Assessment in Neuro-oncology (RANO) criteria and integrated 11C-MET PET was assessed by the T/N ratio.

Results

MRI showed no patient with complete response (CR), six of 11 patients with PR, four of 11 patients with SD, and one of 11 patients with progressive disease (PD). PET revealed metabolic response in five of the six patients with partial response (PR) and in two of the four patients with stable disease (SD), whereas metabolic non-response was detected in one of the six patients with PR, in two of the four patients with SD, and in the one patient with PD. Morphological imaging was predictive for PFS and OS when response was defined as CR, PR, SD, and non-response as PD. Metabolic imaging was predictive when using T/N ratio reduction of >25 as discriminator. Based on the morphologic and metabolic findings of this study a proposal for applying integrated PET/MRI for treatment response in relapsed GBM was developed, which was significantly predictive for PFS and OS (P = 0.010 respectively 0,029, log).

Conclusions

This study demonstrates the potential of integrated 11C-MET-PET/MRI for response assessment of GBM and the utility of combined assessment of morphologic and metabolic information with the proposal for assessing relapsed GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PET:

Positron emission tomography

MRI:

Magnetic resonance imaging

11C-MET:

L-[methyl-11C] Methionine

SUVmax:

Standardized uptake value of the tumor showing the maximum uptake

MTV:

Metabolic tumor volume

PFS:

Progression-free survival

OS:

Overall survival

c1:

Follow-up

References

  1. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66. doi:10.1016/S1470-2045(09)70025-7.

    Article  CAS  PubMed  Google Scholar 

  2. Wong ET, Hess KR, Gleason MJ, Jaeckle KA, Kyritsis AP, Prados MD, et al. Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J Clin Oncol Off J Am Soc Clin Oncol. 1999;17:2572–8.

    Article  CAS  Google Scholar 

  3. Robles Irizarry L, Hambardzumyan D, Nakano I, Gladson CL, Ahluwalia MS. Therapeutic targeting of VEGF in the treatment of glioblastoma. Expert Opin Ther Targets. 2012;16:973–84. doi:10.1517/14728222.2012.711817.

    Article  CAS  PubMed  Google Scholar 

  4. Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27:4733–40. doi:10.1200/JCO.2008.19.8721.

    Article  CAS  Google Scholar 

  5. Wick W, Weller M, van den Bent M, Stupp R. Bevacizumab and recurrent malignant gliomas: a European perspective. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28:e188–9. doi:10.1200/JCO.2009.26.9027. author reply e90–2.

    Article  Google Scholar 

  6. Wick W, Brandes AA, Gorlia T, Bendszus M, Sahm F, Taal W, et al. EORTC 26101 phase III trial exploring the combination of bevacizumab and lomustine in patients with first progression of a glioblastoma. J Clin Oncol 2016;34:(suppl; abstr 2001).

  7. Boss A, Bisdas S, Kolb A, Hofmann M, Ernemann U, Claussen CD, et al. Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT. J Nucl Med Off Publ Soc Nucl Med. 2010;51:1198–205. doi:10.2967/jnumed.110.074773.

    Google Scholar 

  8. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28:1963–72. doi:10.1200/JCO.2009.26.3541.

    Article  Google Scholar 

  9. Galldiks N, Langen KJ, Pope WB. From the clinician’s point of view—what is the status quo of positron emission tomography in patients with brain tumors? Neuro-Oncology. 2015;17:1434–44. doi:10.1093/neuonc/nov118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kickingereder P, Wiestler B, Burth S, Wick A, Nowosielski M, Heiland S, et al. Relative cerebral blood volume is a potential predictive imaging biomarker of bevacizumab efficacy in recurrent glioblastoma. Neuro-Oncology. 2015;17:1139–47. doi:10.1093/neuonc/nov028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hu LS, Eschbacher JM, Dueck AC, Heiserman JE, Liu S, Karis JP, et al. Correlations between perfusion MR imaging cerebral blood volume, microvessel quantification, and clinical outcome using stereotactic analysis in recurrent high-grade glioma. AJNR Am J Neuroradiol. 2012;33:69–76. doi:10.3174/ajnr.A2743.

    Article  CAS  PubMed  Google Scholar 

  12. Nariai T, Tanaka Y, Wakimoto H, Aoyagi M, Tamaki M, Ishiwata K, et al. Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg. 2005;103:498–507. doi:10.3171/jns.2005.103.3.0498.

    Article  PubMed  Google Scholar 

  13. Hutterer M, Nowosielski M, Putzer D, Waitz D, Tinkhauser G, Kostron H, et al. O-(2-18F-fluoroethyl)-L-tyrosine PET predicts failure of antiangiogenic treatment in patients with recurrent high-grade glioma. J Nucl Med Off Publ Soc Nucl Med. 2011;52:856–64. doi:10.2967/jnumed.110.086645.

    CAS  Google Scholar 

  14. Beppu T, Terasaki K, Sasaki T, Sato Y, Tomabechi M, Kato K, et al. MRI and 11C-methyl-L-methionine PET differentiate bevacizumab true responders after initiating therapy for recurrent glioblastoma. Clin Nucl Med. 2016;41:852–7. doi:10.1097/RLU.0000000000001377.

    Article  PubMed  Google Scholar 

  15. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739–44. doi:10.1038/nature08617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96. doi:10.1056/NEJMoa043330.

    Article  CAS  PubMed  Google Scholar 

  17. Delso G, Furst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med Off Publ Soc Nucl Med. 2011;52:1914–22. doi:10.2967/jnumed.111.092726.

    Google Scholar 

  18. Quick HH. Integrated PET/MR. J Magn Reson Imaging JMRI. 2014;39:243–58. doi:10.1002/jmri.24523.

    Article  PubMed  Google Scholar 

  19. Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA, et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer. 1999;35:1773–82.

    Article  CAS  PubMed  Google Scholar 

  20. Chen W, Delaloye S, Silverman DH, Geist C, Czernin J, Sayre J, et al. Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol Off J Am Soc Clin Oncol. 2007;25:4714–21. doi:10.1200/JCO.2006.10.5825.

    Article  CAS  Google Scholar 

  21. Galldiks N, Ullrich R, Schroeter M, Fink GR, Jacobs AH, Kracht LW. Volumetry of [(11)C]-methionine PET uptake and MRI contrast enhancement in patients with recurrent glioblastoma multiforme. Eur J Nucl Med Mol Imaging. 2010;37:84–92. doi:10.1007/s00259-009-1219-5.

    Article  PubMed  Google Scholar 

  22. Yoo MY, Paeng JC, Cheon GJ, Lee DS, Chung JK, Kim EE, et al. Prognostic value of metabolic tumor volume on (11)C-methionine PET in predicting progression-free survival in high-grade glioma. Nucl Med Mol Imaging. 2015;49:291–7. doi:10.1007/s13139-015-0362-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Batra A, Tripathi RP, Singh AK. Perfusion magnetic resonance imaging and magnetic resonance spectroscopy of cerebral gliomas showing imperceptible contrast enhancement on conventional magnetic resonance imaging. Australas Radiol. 2004;48:324–32. doi:10.1111/j.0004-8461.2004.01315.x.

    Article  CAS  PubMed  Google Scholar 

  24. Herholz K, Holzer T, Bauer B, Schroder R, Voges J, Ernestus RI, et al. 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology. 1998;50:1316–22.

    Article  CAS  PubMed  Google Scholar 

  25. Galldiks N, Kracht LW, Burghaus L, Thomas A, Jacobs AH, Heiss WD, et al. Use of 11C-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas. Eur J Nucl Med Mol Imaging. 2006;33:516–24. doi:10.1007/s00259-005-0002-5.

    Article  CAS  PubMed  Google Scholar 

  26. Terakawa Y, Tsuyuguchi N, Iwai Y, Yamanaka K, Higashiyama S, Takami T, et al. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med Off Publ Soc Nucl Med. 2008;49:694–9. doi:10.2967/jnumed.107.048082.

    Google Scholar 

  27. Galldiks N, Rapp M, Stoffels G, Fink GR, Shah NJ, Coenen HH, et al. Response assessment of bevacizumab in patients with recurrent malignant glioma using [18F]fluoroethyl-L-tyrosine PET in comparison to MRI. Eur J Nucl Med Mol Imaging. 2013;40:22–33. doi:10.1007/s00259-012-2251-4.

    Article  CAS  PubMed  Google Scholar 

  28. Brandsma D, van den Bent MJ. Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol. 2009;22:633–8. doi:10.1097/WCO.0b013e328332363e.

    Article  PubMed  Google Scholar 

  29. Radbruch A, Lutz K, Wiestler B, Baumer P, Heiland S, Wick W, et al. Relevance of T2 signal changes in the assessment of progression of glioblastoma according to the Response Assessment in Neurooncology criteria. Neuro-Oncology. 2012;14:222–9. doi:10.1093/neuonc/nor200.

    Article  CAS  PubMed  Google Scholar 

  30. Radbruch A, Fladt J, Kickingereder P, Wiestler B, Nowosielski M, Baumer P, et al. Pseudoprogression in patients with glioblastoma: clinical relevance despite low incidence. Neuro-Oncology. 2015;17:151–9. doi:10.1093/neuonc/nou129.

    Article  PubMed  Google Scholar 

  31. Schmainda KM, Zhang Z, Prah M, Snyder BS, Gilbert MR, Sorensen AG, et al. Dynamic susceptibility contrast MRI measures of relative cerebral blood volume as a prognostic marker for overall survival in recurrent glioblastoma: results from the ACRIN 6677/RTOG 0625 multicenter trial. Neuro-Oncology. 2015;17:1148–56. doi:10.1093/neuonc/nou364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leu K, Pope WB, Cloughesy TF, Lai A, Nghiemphu PL, Chen W, et al. Imaging biomarkers for antiangiogenic therapy in malignant gliomas. CNS Oncol. 2013;2:33–47. doi:10.2217/cns.12.29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pope WB. Predictive imaging marker of bevacizumab efficacy: perfusion MRI. Neuro-Oncology. 2015;17:1046–7. doi:10.1093/neuonc/nov067.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kickingereder P, Radbruch A, Burth S, Wick A, Heiland S, Schlemmer HP, et al. MR perfusion-derived hemodynamic parametric response mapping of Bevacizumab efficacy in recurrent glioblastoma. Radiology. 2016;279:542–52. doi:10.1148/radiol.2015151172.

    Article  PubMed  Google Scholar 

  35. Harris RJ, Cloughesy TF, Pope WB, Nghiemphu PL, Lai A, Zaw T, et al. 18F-FDOPA and 18F-FLT positron emission tomography parametric response maps predict response in recurrent malignant gliomas treated with bevacizumab. Neuro-Oncology. 2012;14:1079–89. doi:10.1093/neuonc/nos141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schwarzenberg J, Czernin J, Cloughesy TF, Ellingson BM, Pope WB, Geist C, et al. 3′-deoxy-3′-18F-fluorothymidine PET and MRI for early survival predictions in patients with recurrent malignant glioma treated with bevacizumab. J Nucl Med Off Publ Soc Nucl Med. 2012;53:29–36. doi:10.2967/jnumed.111.092387.

    CAS  Google Scholar 

  37. Kobayashi K, Hirata K, Yamaguchi S, Manabe O, Terasaka S, Kobayashi H, et al. Prognostic value of volume-based measurements on (11)C-methionine PET in glioma patients. Eur J Nucl Med Mol Imaging. 2015;42:1071–80. doi:10.1007/s00259-015-3046-1.

    Article  CAS  PubMed  Google Scholar 

  38. Preuss M, Werner P, Barthel H, Nestler U, Christiansen H, Hirsch FW, et al. Integrated PET/MRI for planning navigated biopsies in pediatric brain tumors. Childs Nerv Syst: ChNS Off J Int Soc Pediatr Neurosurg. 2014;30:1399–403. doi:10.1007/s00381-014-2412-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelius Deuschl.

Ethics declarations

Funding

An IFORES grant to CD from the University Duisburg-Essen supported the research [http://www.uni-due.de/med/forschung/forschungsfoerderung/ifores.shtml]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

Nothing to disclosure.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Ethics Commission of the Medical Faculty of the University Duisburg-Essen and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study is registered at the Ethics Commission of the Medical Faculty of the University Duisburg-Essen with the number 11–4822-BO. Informed consent was obtained from all individual participants included in the study. This article does not contain any studies with animals performed by any of the authors.

Additional information

Joerg Hense and Marc Schlamann contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deuschl, C., Moenninghoff, C., Goericke, S. et al. Response assessment of bevacizumab therapy in GBM with integrated 11C-MET-PET/MRI: a feasibility study. Eur J Nucl Med Mol Imaging 44, 1285–1295 (2017). https://doi.org/10.1007/s00259-017-3661-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-017-3661-0

Keywords

Navigation