Skip to main content
Log in

Penicillium roqueforti PR toxin gene cluster characterization

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

PR toxin is a well-known isoprenoid mycotoxin almost solely produced by Penicillium roqueforti after growth on food or animal feed. This mycotoxin has been described as the most toxic produced by this species. In this study, an in silico analysis allowed identifying for the first time a 22.4-kb biosynthetic gene cluster involved in PR toxin biosynthesis in P. roqueforti. The pathway contains 11 open reading frames encoding for ten putative proteins including the major fungal terpene cyclase, aristolochene synthase, involved in the first farnesyl-diphosphate cyclization step as well as an oxidoreductase, an oxidase, two P450 monooxygenases, a transferase, and two dehydrogenase enzymes. Gene silencing was used to study three genes (ORF5, ORF6, and ORF8 encoding for an acetyltransferase and two P450 monooxygenases, respectively) and resulted in 20 to 40% PR toxin production reductions in all transformants proving the involvement of these genes and the corresponding enzyme activities in PR toxin biosynthesis. According to the considered silenced gene target, eremofortin A and B productions were also affected suggesting their involvement as biosynthetic intermediates in this pathway. A PR toxin biosynthesis pathway is proposed based on the most recent and available data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe K, Gomi K, Hasegawa F, Machida M (2006) Impact of Aspergillus oryzae genomics on industrial production of metabolites. Mycopathologia 162:143–153. doi:10.1007/s11046-006-0049-2

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Boysen ME, Jacobsson KG, Schnürer J (2000) Molecular identification of species from the Penicillium roqueforti group associated with spoiled animal feed. Appl Environ Microbiol 66:1523–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brock NL, Dickschat JS (2013) PR toxin biosynthesis in Penicillium roqueforti. Chem Bio Chem 14:1189–1193

    Article  CAS  PubMed  Google Scholar 

  • Cantor M, van der Tempel M, Hasen T, Ardö Y (2004) Blue cheese in: Cheese: chemistry physics and microbiology. Elsevier, Oxford, pp. 175–199

    Google Scholar 

  • Caruthers JM, Kang I, Rynkiewicz MJ, Cane DE, Christianson DW (2000) Crystal structure determination of aristolochene synthase from the blue cheese mold Penicillium roqueforti. J Biol Chem 275:25533–25539

    Article  CAS  PubMed  Google Scholar 

  • Casqueiro J, Gutiérrez S, Bañuelos O, Hijarrubia MJ, Martín JF (1999) Gene targeting in Penicillium chrysogenum: disruption of the lys2 gene leads to penicillin overproduction. J Bacteriol 181:1181–1188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castellari C, Quadrelli AM, Laich F (2010) Surface mycobiota on Argentinean dry fermented sausages. Int J Food Microbiol 142:149–155. doi:10.1016/jijfoodmicro201006016

    Article  PubMed  Google Scholar 

  • Chang L, Tsai W (1998) Isolation purification and characterization of the PR oxidase from Penicillium roqueforti. Appl Environ Microbiol 64:5012–5015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang SC, Wei YH, Wei DL, Chen YY, Jong SC (1991) Factors affecting the production of eremofortin C and PR toxin in Penicillium roqueforti. Appl Environ Microbiol 57:2581–2585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang SC, Lu KL, Yeh SF (1993) Secondary metabolites resulting from degradation of PR toxin by Penicillium roqueforti. Appl Environ Microbiol 59:981–986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang SC, Yeh SF, Li SY, Lei WY, Chen MY (1996) A novel secondary metabolite relative to the degradation of PR toxin by Penicillium roqueforti. Curr Microbiol 32:141–146

    Article  CAS  PubMed  Google Scholar 

  • Cheeseman K, Ropars J, Renault P, Dupont J, Gouzy J, Branca A, Abraham A-L, Ceppi M, Conseiller E, Debuchy R, Malagnac F, Goarin A, Silar P, Lacoste S, Sallet E, Bensimon A, Giraud T, Brygoo Y (2014) Multiple recent horizontal transfers of a large genomic region in cheese making fungi. Nat. Commun. 5. doi:10.1038/ncomms3876

  • Chen FC, Chen CF, Wei RD (1982) Acute toxicity of PR toxin a mycotoxin from Penicillium roqueforti. Toxicon Off J Int Soc Toxinology 20:433–441

    Article  CAS  Google Scholar 

  • Del-Cid A, Gil-Durán C, Vaca I, Rojas-Aedo JF, García-Rico RO, Levicán G, Chávez R (2016) Identification and functional analysis of the mycophenolic acid Gene cluster of Penicillium roqueforti. PLoS One 1(1):e0147047

    Article  Google Scholar 

  • Dumay R, Jalain F (1982) Le roquefort. Perspectives aveyronnaises éditions, Paris

    Google Scholar 

  • Fink-Gremmels J (2008) Mycotoxins in cattle feeds and carry-over to dairy milk: a review. Food Addit Contam Part A 25:172–180

    Article  CAS  Google Scholar 

  • Frisvad F, Smedsgaard J, Larsen T, Samson R (2004) Mycotoxins drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–242

    Google Scholar 

  • Gillot G, Jany J-L, Dominguez-Santos R, Poirier E, Debaets S, Hidalgo P, Ullán R, Coton E, Coton M (2016) Genetic basis for mycophenolic acid production and strain-dependent production variability in Penicillium roqueforti. doi:10.1016/j.fm.2016.10.013

  • Gripon JC (1999) Mould-ripened cheeses in: Fox PF (Ed) Cheese: chemistry. US, Physics and Microbiology. Springer, pp. 111–136

    Google Scholar 

  • Hidalgo PI, Ullán RV, Albillos SM, Montero O, Fernández-Bodega MÁ, García-Estrada C, Fernández-Aguado M, Martín J-F (2014) Molecular characterization of the PR toxin gene cluster in Penicillium roqueforti and Penicillium chrysogenum: cross talk of secondary metabolite pathways. Fungal Genet Biol FG B 62:11–24

    Article  CAS  PubMed  Google Scholar 

  • Hymery N, Vasseur V, Coton M, Mounier J, Jany J-L, Barbier G, Coton E (2014) Filamentous fungi and mycotoxins in cheese: a review. Compr Rev Food Sci Food Saf 13:437–456

    Article  CAS  Google Scholar 

  • Janus D, Hoff B, Hofmann E, Kück U (2007) An efficient fungal RNA-silencing system using the dsRed reporter gene. Appl Environ Microbiol 73:962–970

    Article  CAS  PubMed  Google Scholar 

  • Kosalková K, Domínguez-Santos R, Coton M, Coton E, García-Estrada C, Liras P, Martín JF (2015) A natural short pathway synthesizes roquefortine C but not meleagrin in three different Penicillium roqueforti strains. Appl Microbiol Biotechnol 99:7601–7612. doi:10.1007/s00253-015-6676-0

    Article  PubMed  Google Scholar 

  • Lavermicocca P, Valerio F, Visconti A (2003) Antifungal activity of phenyllactic acid against molds isolated from bakery products. Appl Environ Microbiol 69 1 634–1640

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. doi:10.1006/meth.2001.1262

  • Le Bars J, Le Bars P (1989) Espèces fongiques des ensilages de mais Risques mycotoxiques. Recl Médecine Vét 165:433–439

    Google Scholar 

  • Lund F, Filtenborg O, Westall S, Frisvad JC (1996) Associated mycoflora of rye bread. Lett Appl Microbiol 23:213–217

    Article  CAS  PubMed  Google Scholar 

  • Martín JF, Coton M (2017) Blue cheese: microbiota and fungal metabolites. In: Frias J, Martínez-Villaluenga C, Peñas E (eds) Fermented foods in health and disease prevention. Academic Press, pp 275–303

  • Modler HW, Brunner JR, Stine CM (1974) Extracellular protease of Penicillium roqueforti I production and characteristics of crude enzyme preparation. J Dairy Sci 57:523–527. doi:10.3168/jdsS0022-0302(74)84927-1

    Article  CAS  PubMed  Google Scholar 

  • Moreau S, Lablache-Combier A, Biguet J (1980) Production of eremofortins a B and C relative to formation of PR toxin by Penicillium roqueforti. Appl Environ Microbiol 39:770–776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen KF, Sumarah MW, Frisvad JC, Miller JD (2006) Production of metabolites from the Penicillium roqueforti complex. J Agric Food Chem 54:3756–3763

    Article  CAS  PubMed  Google Scholar 

  • O’Brien M, Nielsen KF, O’Kiely P, Forristal PD, Fuller HT, Frisvad JC (2006) Mycotoxins and other secondary metabolites produced in vitro by Penicillium paneum Frisvad and Penicillium roqueforti Thom isolated from baled grass silage in Ireland. J Agric Food Chem 54:9268–9276. doi:10.1021/jf0621018

    Article  PubMed  Google Scholar 

  • Okado N, Sugi M, Ueda M, Mizuhashi F, Lynch BS, Vo TD, Roberts AS (2015) Safety evaluation of AMP deaminase from Aspergillus oryzae. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. doi:10.1016/jfct201511001

    Google Scholar 

  • Polonelli L, Morace G, delle Monache F, Samson RA (1978) Studies on the PR toxin of Penicillium roqueforti. Mycopathologia 66:99–104

    Article  CAS  PubMed  Google Scholar 

  • Proctor RH, Hohn TM (1993) Aristolochene synthase. Isolation, characterization and bacterial expression of a sesquiterpenoid biosynthetic gene (Ari1) from Penicillium roqueforti. J Biol Chem 268:4543–4548

  • Rasmussen RR, Storm IMLD, Rasmussen PH, Smedsgaard J, Nielsen KF (2010) Multi-mycotoxin analysis of maize silage by LC-MS/MS. Anal Bioanal Chem 397:765–776

    Article  CAS  PubMed  Google Scholar 

  • Riclea R, Dickschat JS (2015) Identification of intermediates in the biosynthesis of PR toxin by Penicillium roqueforti. Angew Chem Int Ed 54:1–5

    Article  Google Scholar 

  • Salame TM, Ziv C, Hadar Y, Yarden O (2010) RNAi as a potential tool for biotechnological applications in fungi. Appl Microbiol Biotechnol 89:501–512

    Article  PubMed  Google Scholar 

  • Scott R (1986) Cheesemaking practice. Elsevier Applied Science Publishers

  • Scott PM, Kanhere SR (1979) Instability of PR toxin in blue cheese. J-Assoc Off Anal Chem 62:141–147

    CAS  PubMed  Google Scholar 

  • Scudamore KA, Livesey CT (1998) Occurrence and significance of mycotoxins in forage crops and silage: a review. J Sci Food Agric 77:1–17

    Article  CAS  Google Scholar 

  • Shetty AS, Gaertner FH (1975) Kynureninase-type enzymes of Penicillum roqueforti, Aspergillus niger, Rhizopus stolonifer and Pseudomonas fluorescens: further evidence for distinct kynureninase and hydroxykynureninase activities. J Bacteriol 122:235–244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Starzynska-Janiszewska A, Stodolak B, Dulinski R, Mickowska B (2012) The influence of inoculum composition on selected bioactive and nutritional parameters of grass pea tempeh obtained by mixed-culture fermentation with Rhizopus oligosporus and Aspergillus oryzae strains. Food Sci Technol Int Cienc Tecnol Los Aliment Int 18:113–122

    CAS  Google Scholar 

  • Still P, Wei R, Smalley E, Strong F (1972) A mycotoxin from Penicillium roqueforti isolated from toxic cattle feed. Fed Proc 31:733

    Google Scholar 

  • Storm IMLD, Kristensen NB, Raun BML, Smedsgaard J, Thrane U (2010) Dynamics in the microbiology of maize silage during whole-season storage. J Appl Microbiol 109:1017–1026

    Article  CAS  PubMed  Google Scholar 

  • Storm IMLD, Rasmussen RR, Rasmussen PH (2014) Occurrence of pre- and post-harvest mycotoxins and other secondary metabolites in Danish maize silage. Toxins 6:2256–2269

    Article  PubMed  PubMed Central  Google Scholar 

  • Ullán RV, Campoy S, Casqueiro J, Fernández FJ, Martín JF (2007) Deacetylcephalosporin C production in Penicillium chrysogenum by expression of the isopenicillin N epimerization ring expansion and acetylation genes. Chem Biol 14:329–339

    Article  PubMed  Google Scholar 

  • Ullán RV, Godio RP, Teijeira F, Vaca I, García-Estrada C, Feltrer R, Kosalkova K, Martín JF (2008) RNA-silencing in Penicillium chrysogenum and Acremonium chrysogenum: validation studies using beta-lactam genes expression. J Microbiol Methods 75:209–218

    Article  PubMed  Google Scholar 

  • Veselý D, Veselá D, Adámková (1981) Occurrence of PR toxin-producing Penicillium roqueforti in corn silage. Vet Med 26:109–115

    Google Scholar 

  • Wei R, Schnoes H, Hart P, Strong F (1975) The structure of PR toxin a mycotoxin from Penicillium roqueforti. Tetrahedro 31:109–114

    Article  CAS  Google Scholar 

  • Wei R, Ong T, Whong W, Frezza D, Bronzetti G, Zeiger E (1979) Genetic effects of PR toxin in eukaryotic microorganisms. Environ Mutagen 1:45–53

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Olivier Puel from INRA Toulouse for useful discussion on PR toxin identification and for kindly providing a PR toxin sample. We are also grateful to Pr. Joëlle Dupont from the MNHN for providing the P. roqueforti FM164 genome sequence, Nolwenn Hymery for RT-qPCR statistical analyses, and Riccardo Baroncelli for bioinformatics assistance for PR toxin clusters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Coton.

Ethics declarations

Funding

This study was supported by funding from the Région Bretagne, France (PENIMET 7923, Stratégie d’Attractivité Durable), to Monika Coton for a post-doctoral fellowship for Pedro Hidalgo.

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 789 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidalgo, P.I., Poirier, E., Ullán, R.V. et al. Penicillium roqueforti PR toxin gene cluster characterization. Appl Microbiol Biotechnol 101, 2043–2056 (2017). https://doi.org/10.1007/s00253-016-7995-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7995-5

Keywords

Navigation