Skip to main content
Log in

A new extracellular von Willebrand A domain-containing protein is involved in silver uptake in Microcystis aeruginosa exposed to silver nanoparticles

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) can be toxic for cyanobacteria when present at low nanomolar concentrations, but the molecular mechanisms whereby AgNPs (or free Ag+ released from AgNPs) interact with these prokaryotic algal cells remain elusive. Here, we studied Ag uptake mechanisms in the prokaryotic cyanobacterium Microcystis aeruginosa exposed to AgNPs by measuring growth inhibition in the absence or presence of high-affinity Ag-binding ligands and by genetic transformation of E. coli with a protein predicted to be involved in Ag uptake. We discovered a new von Willebrand A (vWA) domain-containing protein in M. aeruginosa that mediates Ag uptake from AgNPs when expressed in E. coli. This new Ag transport protein, which is absent in eukaryotic algae, is a potential candidate explaining the higher AgNPs toxicity in cyanobacteria such as M. aeruginosa than that in eukaryotic algae. The present study provides new insights on Ag uptake mechanisms in the prokaryotic algae M. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams NWH, Kramer JR (1999) Potentiometric determination of silver thiolate formation constants using a Ag2S electrode. Aquat Geochem 5:1–11

    Article  CAS  Google Scholar 

  • Behra R, Sigg L, Clift MJ, Minghetti M, Johnston B, Petri-Fink A, Rothen-Rutishauuser B (2013) Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. J R Soc Interface 10:20130396

    Article  PubMed  PubMed Central  Google Scholar 

  • Blaser SA, Scheringer M, MacLeod M, Hungerbühler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409

    Article  CAS  PubMed  Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    Article  CAS  PubMed  Google Scholar 

  • Das P, Metcalfe CD, Xenopoulos MA (2014) Interactive effects of silver nanoparticles and phosphorus on phytoplankton growth in natural waters. Environ Sci Technol 48:4573–4580

    Article  CAS  PubMed  Google Scholar 

  • Davies A, Hendrich J, Minh ATV, Wratten J, Douglas L, Dolphin AC (2007) Functional biology of the α2δ subunits of voltage-gated calcium channels. Trends Pharmacol Sci 28(5):220–228

    Article  CAS  PubMed  Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531

    Article  CAS  PubMed  Google Scholar 

  • Franke S (2007) Microbiology of the toxic noble metal silver. In: Nies DH and Silver S (ed) Molecular microbiology of heavy metals. Springer-Verlag, Berlin, p 343–355

  • Fu H, Reis N, Lee Y, Glickman MH, Vierstra RD (2001) Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO J 20(24):7096–7107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-Allué C, Schirmer K, Tlili A, Gessner MO, Behra R (2015) Silver nanoparticle effects on stream periphyton during short-term exposures. Environ Sci Technol 49(2):1165–1172

    Article  PubMed  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222

    Article  CAS  PubMed  Google Scholar 

  • He D, Dorantes-Aranda JJ, Waite TD (2012) Silver nanoparticle algae interactions: oxidative dissolution, reactive oxygen species generation and synergistic toxic effects. Environ Sci Technol 46(16):8731–8738

    Article  CAS  PubMed  Google Scholar 

  • Hsu-Kim H (2007) Stability of metal-glutathione complexes during oxidation by hydrogen peroxide and Cu(II) catalysis. Environ Sci Technol 41:2338–2342

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Cheng J, Yi J (2016) Impact of silver nanoparticles on marine diatom Skeletonema costatum. J Appl Toxicol. doi:10.1002/jat.3325

    Google Scholar 

  • Leclerc S, Wilkinson KJ (2014) Bioaccumulation of nanosilver by Chlamydomonas reinhardtii-nanoparticle or the free ion? Environ Sci Technol 48(1):358–364

    Article  CAS  PubMed  Google Scholar 

  • Li X, Lenhart JJ, Walker HW (2010) Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir 26(22):16690–16698

    Article  CAS  PubMed  Google Scholar 

  • Martell AE, Smith RM, Motekaitis RJ (2001) NIST standard reference database 46 Version 6.0: NIST critically selected stability constants of metal complexes. NIST Standard Reference Data, Gaithersburg, MD

    Google Scholar 

  • Massarsky A, Trudeau VL, Moon TW (2014) Predicting the environmental impact of nanosilver. Environ Toxicol Pharmacol 38:861–873

    Article  CAS  PubMed  Google Scholar 

  • Miao AJ, Schwehr KA, Zhang SL, Luo Z, Quigg A, Santschi PH (2009) The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157:3034–3041

    Article  CAS  PubMed  Google Scholar 

  • Miao AJ, Luo ZP, Chen CS, Chin WC, Santschi PH, Quigg A (2010) Intracellular uptake: a possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica. PLoS One 5:e15196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42(23):8959–8964

    Article  CAS  PubMed  Google Scholar 

  • Oukarroum A, Bras S, Perreault F, Popovic R (2012) Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotox Environ Saf 78:80–85

    Article  CAS  Google Scholar 

  • Park EJ, Yi J, Kim Y, Choi K, Park K (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol in Vitro 24(3):872–878

    Article  CAS  PubMed  Google Scholar 

  • Qian HF, Peng XF, Han X, Ren J, Sun LW, Fu ZW (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25(9):1947–1955

    Article  CAS  Google Scholar 

  • Qian HF, Han X, Peng XF, Lu T, Liu WP, Fu ZW (2014) The circadian clock gene regulatory module enantioselectively mediates imazethapyr-induced early flowering in Arabidopsis thaliana. J Plant Physiol 171(5):92–98

    Article  CAS  PubMed  Google Scholar 

  • Roco MC (2005) Environmentally responsible development of nanotechnology. Environ Sci Technol 39:106–112

    Article  Google Scholar 

  • Sigg L, Lindauer U (2015) Silver nanoparticle dissolution in the presence of ligands and of hydrogen peroxide. Environ Pollut 206:582–587

    Article  CAS  PubMed  Google Scholar 

  • Whiteley CM, Valle MD, Jones KC, Sweetman AJ (2013) Challenges in assessing release, exposure and fate of silver nanoparticles within the UK environment. Environ Sci Process Impacts 15:2050–2058

    Article  CAS  PubMed  Google Scholar 

  • Whittaker CA, Hynes RO (2002) Distribution and evolution of von Willebrand/ integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell 13(10):3369–3387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wijnhoven SWP, Peijnerburg WJGM, Herberts CA, Hagens WI, Oomen AG (2009) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138

    Article  CAS  Google Scholar 

  • Xiu Z, Zhang Q, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particlespecific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the program for the National Natural Science Foundation of China (grant numbers 21277125 and 21577128) and the Zhejiang Provincial Natural Science Foundation of China (grant number LR14B070001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Qian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any experiments involving human participants or animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Jin, Y., Lavoie, M. et al. A new extracellular von Willebrand A domain-containing protein is involved in silver uptake in Microcystis aeruginosa exposed to silver nanoparticles. Appl Microbiol Biotechnol 100, 8955–8963 (2016). https://doi.org/10.1007/s00253-016-7728-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7728-9

Keywords

Navigation