Skip to main content

Advertisement

Log in

Evaluation of the effects of different liquid inoculant formulations on the survival and plant-growth-promoting efficiency of Rhodopseudomonas palustris strain PS3

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biofertilizers can help improve soil quality, promote crop growth, and sustain soil health. The photosynthetic bacterium Rhodopseudomonas palustris strain PS3 (hereafter, PS3), which was isolated from Taiwanese paddy soil, can not only exert beneficial effects on plant growth but also enhance the efficiency of nutrient uptake from applied fertilizer. To produce this elite microbial isolate for practical use, product development and formulation are needed to permit the maintenance of the high quality of the inoculant during storage. The aim of this study was to select a suitable formulation that improves the survival and maintains the beneficial effects of the PS3 inoculant. Six additives (alginate, polyethylene glycol [PEG], polyvinylpyrrolidone-40 [PVP], glycerol, glucose, and horticultural oil) were used in liquid-based formulations, and their capacities for maintaining PS3 cell viability during storage in low, medium, and high temperature ranges were evaluated. Horticultural oil (0.5 %) was chosen as a potential additive because it could maintain a relatively high population and conferred greater microbial vitality under various storage conditions. Furthermore, the growth-promoting effects exerted on Chinese cabbage by the formulated inoculants were significantly greater than those of the unformulated treatments. The fresh and dry weights of the shoots were significantly increased, by 10–27 and 22–40 %, respectively. Horticultural oil is considered a safe, low-cost, and easy-to-process material, and this formulation would facilitate the practical use of strain PS3 in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929. doi:10.1007/s00248-009-9531-y

    Article  CAS  PubMed  Google Scholar 

  • Adholeya A, Das M (2012) Biofertilizers: potential for crop improvement under stressed conditions. In: Tuteja N, Gill SS, Tuteja R (eds) Improving crop productivity in sustainable agriculture. Wiley-VCH, Weinheim, Germany, pp. 183–200

    Chapter  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770. doi:10.1016/s0734-9750(98)00003-2

    Article  CAS  Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez J-P (2013) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33. doi:10.1007/s11104-013-1956-x

  • Bazilah ABI, Sariah M, Abidin MAZ, Yasmeen S (2011) Effect of carrier and temperature on the viability of Burkholderia sp. (UPMB3) and Pseudomonas sp. (UPMP3) during storage. Int J Agric Biol 13:198–202

    Google Scholar 

  • Berg G (2014) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  Google Scholar 

  • Biederbeck VO, Geissler HJ (1993) Effect of storage temperatures on Rhizobium meliloti survival in peat- and clay-based inoculants. Can J Plant Sci 73:101–110. doi:10.4141/cjps93-013

    Article  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350. doi:10.1007/s11274-011-0979-9

    Article  CAS  PubMed  Google Scholar 

  • Bremner JM, Mulvaney CS (1982) Nitrogen—Total. In: Page AL (ed) Methods of soil analysis, Part, vol 2. Chemical and microbiological properties. American Society of Agronomy, Madison, WI, pp. 595–624

    Google Scholar 

  • Borra R, Lotufo M, Gagioti S, Barros FM, Andrade P (2009) A simple method to measure cell viability in proliferation and cytotoxicity assays. Braz Oral Res 23:255–262

    Article  PubMed  Google Scholar 

  • Burges HD (1998) Formulation of microbial biopesticides: beneficial microorganisms, nematodes, and seed treatments. Springer Dordrecht, The Netherlands

    Book  Google Scholar 

  • Catroux G, Hartmann A, Revellin C (2001) Trends in rhizobial inoculant production and use. Plant Soil 230:21–30

    Article  CAS  Google Scholar 

  • Das AJ, Kumar M, Kumar R (2013) Plant growth promoting rhizobacteria (PGPR): an alternative of chemical fertilizer for sustainable, environment friendly agriculture. Res J Agric For Sci 1:21–23

    Google Scholar 

  • Dayamani KJ, Brahmaprakash GP (2014) Influence of form and concentration of the osmolytes in liquid inoculants formulations of plant growth promoting bacteria. Int J Sci Res Publ 4:1–6

    Google Scholar 

  • Denardin ND, Freire JRJ (2000) Assessment of polymers for the formulation of legume inoculants. World J Microbiol Biotechnol 16:215–217. doi:10.1023/a:1008914223467

    Article  CAS  Google Scholar 

  • DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Elbadry M, Bassel AE, Elbanna K (1999) Occurrence and dynamics of phototrophic purple nonsulphur bacteria compared with other asymbiotic nitrogen fixers in rice fields of Egypt. World J Microbiol Biotechnol 15:359–362

    Article  Google Scholar 

  • Fernandez D, Beers EH, Brunner JF, Doerr MD, Dunley JE (2006) Horticultural mineral oil applications for apple powdery mildew and codling moth, Cydia pomonella (L.). Crop Prot 25:585–591

    Article  Google Scholar 

  • Getha K, Vikineswary S, Chong VC (1998) Isolation and growth of the phototrophic bacterium Rhodopseudomonas palustris strain B1 in sago-starch-processing wastewater. World J Microb Biot 14:505–511

    Article  Google Scholar 

  • Gomez M, Silva N, Hartmann A, Sagardoy M, Catroux G (1997) Evaluation of commercial soybean inoculants from Argentina. World J Microbiol Biotechnol 13:167–173

    Article  Google Scholar 

  • GonzálezPinzón R, González PR, Haggerty R, Myrold D (2012) Measuring aerobic respiration in stream ecosystems using the resazurin-resorufin system. J Geophys Res 117

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412. doi:10.1016/j.soilbio.2004.08.030

    Article  CAS  Google Scholar 

  • Hansen TA, van Gemerden H (1972) Sulfide utilization by purple nonsulfur bacteria. Arch Mikrobiol 86:49–56

    Article  CAS  PubMed  Google Scholar 

  • Hartel PG, Alexander M (1986) Role of extracellular polysaccharide production and clays in the desiccation tolerance of cowpea Bradyrhizobia. Soil Sci Soc Am J 50:1193–1198

    Article  CAS  Google Scholar 

  • Helmy EI, Kwaiz FA, El-Sahn OMN (2012) The usage of mineral oils to control insects. Egypt Acad J Biol Sci 5:167–174

    Google Scholar 

  • Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97:8859–8873. doi:10.1007/s00253-013-5228-8

    Article  CAS  PubMed  Google Scholar 

  • Herridge DF (2008) Inoculation technology for legumes. In: Dilworth M, James E, Sprent J, Newton W (eds) Nitrogen-fixing leguminous symbioses. Springer Dordrecht, The Netherlands, pp. 77–115

    Google Scholar 

  • Hsu SH, Lo KJ, Fang W, Lur HS, Liu CT (2015) Application of phototrophic bacterial inoculant to reduce nitrate content in hydroponic leafy vegetables. Crop Environ Bioinf 12:11

    Google Scholar 

  • Hynes RK, Craig KA, Covert D, Rennie RJ, Smith RS (1995) Liquid rhizobial inoculants for lentil and field pea. J Prod Agric 8:547–552. doi:10.2134/jpa1995.0547

    Article  Google Scholar 

  • Idi A, Md Nor MH, Abdul Wahab MF, Ibrahim Z (2014) Photosynthetic bacteria: an eco-friendly and cheap tool for bioremediation. Rev Environ Sci Biotechnol 14:271–285

    Article  Google Scholar 

  • Imhoff JF (2006) The phototrophic alpha-proteobacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp. 41–64

    Chapter  Google Scholar 

  • Kell DB (2000) Bacterial dormancy and culturability: the role of autocrine growth factors. Commentary. Curr Opin Microbiol 3:238–243

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Station de Pathologie Végétale et Phyto-Bactériologie (ed), proceeding of the 4th international conference on plant pathogenic bacteria, vol II. Gilbert-Clarey, Tours, France, pp. 879–882

    Google Scholar 

  • Knudsen D, Peterson GA, Pratt PF (1982) Lithium, sodium, and potassium. In: Page AL (ed) Methods of soil analysis, Part, vol 2. Chemical and microbiological properties. American Society of Agronomy, Madison, WI, pp. 225–246

    Google Scholar 

  • Kornochalert N, Kantachote D, Chaiprapat S, Techkarnjanaruk S (2013) Use of Rhodopseudomonas palustris P1 stimulated growth by fermented pineapple extract to treat latex rubber sheet wastewater to obtain single cell protein. Ann Microbiol 64:1021–1032

    Article  Google Scholar 

  • Kumaresan G, Reetha D (2011) Survival of Azospirillum brasilense in liquid formulation amended with different chemical additives. J Phytol 3:48–51

    CAS  Google Scholar 

  • Lloret J, Wulff BBH, Rubio JM, Downie JA, Bonilla I, Rivilla R (1998) Exopolysaccharide II production is regulated by salt in the halotolerant strain Rhizobium meliloti EFB1. Appl Environ Microbiol 64:1024–1028

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25. doi:10.1023/B:ANTO.0000024903.10757.6e

    Article  CAS  PubMed  Google Scholar 

  • Malusá E, Paszt LS, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 2012:1–12

    Article  Google Scholar 

  • Miles AA, Misra SS, Irwin JO (1938) The estimation of the bactericidal power of the blood. J Hyg (Lond) 38:732–749

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Phys Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. doi:10.1016/S0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  • Oliveira TC, Rego A.C, Garrido J, Borges F, Macedo T, Oliveira CR (2010) Neurotoxicity of heroin–cocaine combinations in rat cortical neurons. Toxicology 276:11–17. doi:10.1016/j.tox.2010.06.009

  • Opande GO, Mutebi C, Arama PF (2013) Innundative biocontrol of water hyacinth (Eichhornia crassipes (Mart.) Solms. Laubach) using zonate leaf spot (Acremonium zonatum Sawada gams) fungal agent. IOSR J Agric Vet Sci 6:69–71

    Article  Google Scholar 

  • Öztürk S, Aslim B (2010) Modification of exopolysaccharide composition and production by three cyanobacterial isolates under salt stress. Environ Sci Pollut Res 17:595–602. doi:10.1007/s11356-009-0233-2

    Article  Google Scholar 

  • Pindi PK, Satyanarayana SDV (2012) Liquid microbial consortium. A potential tool for sustainable soil health. J Biofertil Biopestic 3:7. doi:10.4172/2155–6202.1000124

  • Šantek B, Marić V (1995) Temperature and dissolved oxygen concentration as parameters of Azotobacter chroococcum cultivation for use in biofertilizers. Biotechnol Lett 17:453–458. doi:10.1007/bf00130807

    Article  Google Scholar 

  • Shaw PW, Bradley SJ, Walker JTS (2000) Efficacy and timing of insecticides for the control of San Jose scale on apple. N Z Prot 53:13–17

    CAS  Google Scholar 

  • Siefert E, Irgens RL, Pfennig N (1978) Phototrophic purple and green bacteria in a sewage treatment plant. Appl Environ Microbiol 35:38–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singleton P (2002) Development and evaluation of liquid inoculants. In: Herridge D (ed) Inoculants and nitrogen fixation of legumes in Vietnam. ACIAR Proc 109e: 52–66

  • Stansly PA, Connor JM (2005) Crop and insect response to horticultural mineral oil on tomato and pepper. Proc Fla State Hort Sci 118:132–141

    Google Scholar 

  • Stephens JHG, Rask HM (2000) Inoculant production and formulation. Field Crops Res 65:249–258. doi:10.1016/s0378-4290(99)00090-8

    Article  Google Scholar 

  • Sutherland I (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Aono T, Lee KB, Suzuki T, Liu CT, Miwa H, Wakao S, Iki T, Oyaizu H (2007) Rhizobial factors required for stem nodule maturation and maintenance in Sesbania rostrata-Azorhizobium caulinodans ORS571 symbiosis. Appl Environ Microbiol 73:6650–6659. doi:10.1128/AEM.01514-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tittabutr P, Payakapong W, Teaumroong N, Singleton PW, Boonkerd N (2007) Growth, survival and field performance of bradyrhizobial liquid inoculant formulations with polymeric additives. Sci Asia 33:69–77

    Article  CAS  Google Scholar 

  • Trivedi P, Pandey A (2008) Recovery of plant growth-promoting rhizobacteria from sodium alginate beads after 3 years following storage at 4 °C. J Ind Microbiol Biotechnol 35:205–209

    Article  CAS  PubMed  Google Scholar 

  • Twigg RS (1945) Oxidation-reduction aspects of resazurin. Nature 155:401–402

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586. doi:10.1023/a:1026037216893

    Article  CAS  Google Scholar 

  • Wong WT, Tseng CH, Hsu SH, Lur HS, Mo CW, Huang CN, Hsu SC, Lee KT, Liu CT (2014) Promoting effects of a single Rhodopseudomonas palustris inoculant on plant growth by Brassica rapa chinensis under low fertilizer input. Microbes Environ 29:303–313. doi:10.1264/jsme2.ME14056

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank American Journal Experts for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Te Liu.

Ethics declarations

Funding

This study was supported by grants from the Ministry of Science and Technology (MOST 103–2622-B-002-008-CC2 and MOST 102–2313-B-002-011-MY3) and National Taiwan University (103R7602B4) and was also funded by the Great Victory Chemical Industry Co. LTD.

Conflict of interest

The authors declare that they have no conflicts of interest. This article does not contain any studies with human or animals participants.

Additional information

Sook-Kuan Lee and Huu-Sheng Lur contributed equally to the work.

Electronic Supplementary Material

ESM 1

(DOC 612 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SK., Lur, HS., Lo, KJ. et al. Evaluation of the effects of different liquid inoculant formulations on the survival and plant-growth-promoting efficiency of Rhodopseudomonas palustris strain PS3. Appl Microbiol Biotechnol 100, 7977–7987 (2016). https://doi.org/10.1007/s00253-016-7582-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7582-9

Keywords

Navigation