Skip to main content
Log in

Simultaneous detection of bioavailable arsenic and cadmium in contaminated soils using dual-sensing bioreporters

  • Methods and protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Whole-cell bioreporters (WCBs) have attracted increasing attention during the last few decades because they allow fast determination of bioavailable heavy metals in contaminated sites. Various WCBs to monitor specific heavy metals such as arsenic and cadmium in diverse environmental systems are available. However, currently, no study on simultaneous analysis of arsenic and cadmium has been reported, even though soils are contaminated by diverse heavy metals and metalloids. We demonstrated herein the development of dual-sensing WCBs to simultaneously quantify bioavailable arsenic and cadmium in contaminated sites by employing the promoter regions of the ars and znt operons as separate metal-sensing domains, and egfp and mcherry as reporter genes. The dual-sensing WCBs were generated by inserting two sets of genes into E. coli DH5α. The capability of WCBs was successfully proved to simultaneously quantify bioavailable arsenic and cadmium in amended Landwirtschaftliche Untersuchungs und Forschungsanstalt (LUFA) soils, and then, it was applied to contaminated field soils collected from a smelter area in Korea. As a result, it was noticed that the bioavailable portion of cadmium was higher than that of arsenic while the absolute amount of bioavailable arsenic and cadmium level was opposite. Since both cadmium and arsenic were assessed from the same E. coli cells, the data obtained by using dual-sensing WCBs would be more efficient and convenient than that from comparative WCB assay. In spite of advantageous aspects, to our knowledge, this is the first report on a dual-sensing WCB for rapid and concurrent quantification of bioavailable arsenic and cadmium in contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abedin MJ, Cresser MS, Meharg AA, Feldmann J, Cotter-Howells J (2002) Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environ Sci Technol 36(5):962–968

    Article  CAS  PubMed  Google Scholar 

  • Abernathy CO, Thomas DJ, Calderon RL (2003) Health effects and risk assessment of arsenic. J Nutr 133(5 Suppl 1):1536S–1538S

    CAS  PubMed  Google Scholar 

  • Baumann B, van der Meer JR (2007) Analysis of bioavailable arsenic in rice with whole cell living bioreporter bacteria. J Agric Food Chem 55(6):2115–2120. doi:10.1021/jf0631676

    Article  CAS  PubMed  Google Scholar 

  • Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6(3):206–212

    Article  CAS  PubMed  Google Scholar 

  • Branco R, Cristovao A, Morais PV (2013) Highly sensitive, highly specific whole-cell bioreporters for the detection of chromate in environmental samples. PLoS One 8(1):e54005. doi:10.1371/journal.pone.0054005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brocklehurst KR, Hobman JL, Lawley B, Blank L, Marshall SJ, Brown NL, Morby AP (1999) ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol Microbiol 31(3):893–902

    Article  CAS  PubMed  Google Scholar 

  • Corbisier P, van der Lelie D, Borremans B, Provoost A, de Lorenzo V, Brown NL, Lloyd JR, Hobman JL, Csöregi E, Johansson G (1999) Whole cell-and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal Chim Acta 387(3):235–244

    Article  CAS  Google Scholar 

  • Diesel E, Schreiber M, van der Meer JR (2009) Development of bacteria-based bioassays for arsenic detection in natural waters. Anal Bioanal Chem 394(3):687–693. doi:10.1007/s00216-009-2785-x

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Morales P, Saceda M, Kenney N, Kim N, Salomon DS, Gottardis MM, Solomon HB, Sholler PF, Jordan VC, Martin MB (1994) Effect of cadmium on estrogen receptor levels and estrogen-induced responses in human breast cancer cells. J Biol Chem 269(24):16896–16901

    CAS  PubMed  Google Scholar 

  • Gireesh-Babu P, Chaudhari A (2012) Development of a broad-spectrum fluorescent heavy metal bacterial biosensor. Mol Biol Rep 39(12):11225–11229. doi:10.1007/s11033-012-2033-x

    Article  CAS  PubMed  Google Scholar 

  • Ivask A, Francois M, Kahru A, Dubourguier HC, Virta M, Douay F (2004) Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters. Chemosphere 55(2):147–156. doi:10.1016/j.chemosphere.2003.10.064

    Article  CAS  PubMed  Google Scholar 

  • Ivask A, Rolova T, Kahru A (2009) A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing. BMC Biotechnol 9:41. doi:10.1186/1472-6750-9-41

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain CK, Ali I (2000) Arsenic: occurrence, toxicity and speciation techniques. Water Res 34(17):4304–4312. doi:10.1016/S0043-1354(00)00182-2

    Article  CAS  Google Scholar 

  • Jusoh WNAW, Wong LS (2014) Exploring the potential of whole cell biosensor: a review in environmental applications. Int J Chem Environ Biol Sci 2:52–56

    Google Scholar 

  • Kaur H, Kumar R, Babu JN, Mittal S (2015) Advances in arsenic biosensor development–a comprehensive review. Biosens Bioelectron 63:533–545

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Wong J, Wei L (2005) Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere 58(4):475–483

    Article  CAS  PubMed  Google Scholar 

  • Maderova L, Paton GI (2013) Deployment of microbial sensors to assess zinc bioavailability and toxicity in soils. Soil Biol Biochem 66:222–228. doi:10.1016/j.soilbio.2013.07.017

    Article  CAS  Google Scholar 

  • Magrisso S, Erel Y, Belkin S (2008) Microbial reporters of metal bioavailability. Microb Biotechnol 1(4):320–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirasoli M, Feliciano J, Michelini E, Daunert S, Roda A (2002) Internal response correction for fluorescent whole-cell biosensors. Anal Chem 74(23):5948–5953

    Article  CAS  PubMed  Google Scholar 

  • Morrison JL (1969) Distribution of arsenic from poultry litter in broiler chickens, soil, and crops. J Agric Food Chem 17(6):1288–1290

    Article  CAS  Google Scholar 

  • Nachman KE, Graham JP, Price LB, Silbergeld EK (2005) Arsenic: a roadblock to potential animal waste management solutions. Environ Health Perspect 113(9):1123–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petanen T, Romantschuk M (2003) Toxicity and bioavailability to bacteria of particle-associated arsenite and mercury. Chemosphere 50(3):409–413

    Article  PubMed  Google Scholar 

  • Priyadarshi H, Alam A, Gireesh-Babu P, Das R, Kishore P, Kumar S, Chaudhari A (2012) A GFP-based bacterial biosensor with chromosomally integrated sensing cassette for quantitative detection of Hg(II) in environment. J Environ Sci (China) 24(5):963–968

    Article  CAS  Google Scholar 

  • Riether KB, Dollard MA, Billard P (2001) Assessment of heavy metal bioavailability using Escherichia coli zntAp::lux and copAp::lux-based biosensors. Appl Microbiol Biotechnol 57(5–6):712–716

    Article  CAS  PubMed  Google Scholar 

  • Robbens J, Dardenne F, Devriese L, De Coen W, Blust R (2010) Escherichia coli as a bioreporter in ecotoxicology. Appl Microbiol Biotechnol 88(5):1007–1025. doi:10.1007/s00253-010-2826-6

    Article  CAS  PubMed  Google Scholar 

  • Roda A, Roda B, Cevenini L, Michelini E, Mezzanotte L, Reschiglian P, Hakkila K, Virta M (2011) Analytical strategies for improving the robustness and reproducibility of bioluminescent microbial bioreporters. Anal Bioanal Chem 401(1):201–211. doi:10.1007/s00216-011-5091-3

    Article  CAS  PubMed  Google Scholar 

  • Rowe JL, Starnes GL, Chivers PT (2005) Complex transcriptional control links NikABCDE-dependent nickel transport with hydrogenase expression in Escherichia coli. J Bacteriol 187(18):6317–6323. doi:10.1128/JB.187.18.6317-6323.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selifonova O, Burlage R, Barkay T (1993) Bioluminescent sensors for detection of bioavailable Hg(II) in the environment. Appl Environ Microbiol 59(9):3083–3090

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, Jiang B, Tian S, Tang H, Liu Z, Li C, Jia J, Huang WE, Zhang X, Li G (2014) A whole-cell bioreporter approach for the genotoxicity assessment of bioavailability of toxic compounds in contaminated soil in China. Environ Pollut 195:178–184. doi:10.1016/j.envpol.2014.08.024

    Article  CAS  PubMed  Google Scholar 

  • Sorensen SJ, Burmolle M, Hansen LH (2006) Making bio-sense of toxicity: new developments in whole-cell biosensors. Curr Opin Biotechnol 17(1):11–16. doi:10.1016/j.copbio.2005.12.007

    Article  CAS  PubMed  Google Scholar 

  • Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26(5):1788–1799. doi:10.1016/j.bios.2010.09.005

    Article  CAS  PubMed  Google Scholar 

  • Tao HC, Peng ZW, Li PS, Yu TA, Su J (2013) Optimizing cadmium and mercury specificity of CadR-based E. coli biosensors by redesign of CadR. Biotechnol Lett 35(8):1253–1258. doi:10.1007/s10529-013-1216-4

    Article  CAS  PubMed  Google Scholar 

  • Tchounwou PB, Centeno JA, Patlolla AK (2004) Arsenic toxicity, mutagenesis, and carcinogenesis–a health risk assessment and management approach. Mol Cell Biochem 255(1–2):47–55

    Article  CAS  PubMed  Google Scholar 

  • Turpeinen R, Virta M, Haggblom MM (2003) Analysis of arsenic bioavailability in contaminated soils. Environ Toxicol Chem 22(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • van der Meer JR, Belkin S (2010) Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 8(7):511–522. doi:10.1038/nrmicro2392

    Article  PubMed  Google Scholar 

  • Williams C, David D (1976) The accumulation in soil of cadmium residues from phosphate fertilizers and their effect on the cadmium content of plants. Soil Sci 121(2):86–93

    Article  CAS  Google Scholar 

  • Wongsasuluk P, Chotpantarat S, Siriwong W, Robson M (2014) Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environ Geochem Health 36(1):169–182

    Article  CAS  PubMed  Google Scholar 

  • Wood KV, Gruber MG (1996) Transduction in microbial biosensors using multiplexed bioluminescence. Biosens Bioelectron 11(3):207–214

    Article  CAS  PubMed  Google Scholar 

  • Wuana RA, Okieimen FE (2011) heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology 2011

  • Yoon Y, Kang Y, Chae Y, Kim S, Lee Y, Jeong SW, An YJ (2015) Arsenic bioavailability in soils before and after soil washing: the use of Escherichia coli whole-cell bioreporters. Environ Sci Pollut Res Int. doi:10.1007/s11356-015-5457-8

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Korean Ministry of the Environment as a GAIA Project (2014000560001); the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, & Future Planning (2015 A0020074); and the Ministry of Education (2013R1A1A2061386).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn-Joo An.

Ethics declarations

Ethical statement

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Conflict of interest

Youngdae Yoon declares that he has no conflict of interest. Sunghoon Kim declares that he has no conflict of interest. Yooeun Chae declares that she has no conflict of interest. Shin Woong Kim declares that he has no conflict of interest. Yerin Kang declares that she has no conflict of interest. Seung-Woo Jeong declares that he has no conflict of interest. Youn-Joo An declares that she has no conflict of interest.

Electronic Supplementary Material

ESM 1

(PDF 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, Y., Kim, S., Chae, Y. et al. Simultaneous detection of bioavailable arsenic and cadmium in contaminated soils using dual-sensing bioreporters. Appl Microbiol Biotechnol 100, 3713–3722 (2016). https://doi.org/10.1007/s00253-016-7338-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7338-6

Keywords

Navigation