Skip to main content
Log in

Characterization and gene cloning of a maltotriose-forming exo-amylase from Kitasatospora sp. MK-1785

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 25 February 2015

Abstract

A maltotriose-forming amylase (G3Amy) from Kitasatospora sp. MK-1785 was successfully isolated from a soil sample by inhibiting typical extracellular α-amylases using a proteinaceous α-amylase inhibitor. G3Amy was purified from the MK-1785 culture supernatant and characterized. G3Amy produced maltotriose as the principal product from starch and was categorized as an exo-α-amylase. G3Amy could also transfer maltotriose to phenolic and alcoholic compounds. Therefore, G3Amy can be useful for not only maltotriose manufacture but also maltooligosaccharide-glycoside synthesis. Further, the G3Amy gene was cloned and expressed in Escherichia coli cells. Analysis of its deduced amino acid sequence revealed that G3Amy consisted of an N-terminal GH13 catalytic domain and two C-terminal repeat starch-binding domains belonging to CBM20. It is suggested that natural G3Amy was subjected to proteolysis at N-terminal region of the anterior CBM20 in the C-terminal region. As with natural G3Amy, recombinant G3Amy could produce and transfer maltotriose from starch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amann E, Ochs B, Abel KJ (1988) Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69:301–315. doi:10.1016/0378-1119(88)90440-4

    Article  CAS  PubMed  Google Scholar 

  • Arai M, Nishimura T, Tsukao K, Kawaguchi T, Hayashi H, Shimizu Y, Murao S (1989) New proteinaceous α-amylase inhibitor (T-76) from Streptomyces nitrosporeus. J Ferment Bioeng 68:56–57. doi:10.1016/0922-338X(89)90215-8

    Article  CAS  Google Scholar 

  • Bae HK, Lee SB, Park CS, Shim JH, Lee HY, Kim MJ, Baek JS, Roh HJ, Choi JH, Choe EO, Ahn DU, Park KH (2002) Modification of ascorbic acid using transglycosylation activity of Bacillus stearothermophilus maltogenic amylase to enhance its oxidative stability. J Agric Food Chem 50:3309–3316. doi:10.1021/jf011550z

    Article  CAS  PubMed  Google Scholar 

  • Bijttebier A, Delcour JA, Goesaert H (2008) Amylase action pattern on starch polymers. Biologia 63:989–999. doi:10.2478/s11756-008-0169-x

    Article  CAS  Google Scholar 

  • Dauter Z, Dauter M, Christensen S, Brzozowski AM, Borchert TV, Beier L, Davies GJ, Wilson KS (1999) X-ray structure of Novamyl, the five-domain “maltogenic” α-amylase from Bacillus stearothermophilus: maltose and acarbose complexes at 1.7Å resolution. Biochemistry 38:8385–8392. doi:10.1021/bi990256l

    Article  CAS  PubMed  Google Scholar 

  • Derde LJ, Gomand SV, Courtin CM, Delcour JA (2012) Characterisation of three starch degrading enzymes: thermostable β-amylase, maltotetraogenic and maltogenic α-amylases. Food Chem 135:713–721. doi:10.1016/j.foodchem.2012.05.031

    Article  CAS  PubMed  Google Scholar 

  • Desmet T, Soetaert W, Bojarova P, Kren V, Dijkhuizen L, Eastwick-Field V, Schiller A (2012) Enzymatic glycosylation of small molecules: challenging substrates require tailored catalysts. Chem Eur J 18:10786–10801. doi:10.1002/chem.201103069

    Article  CAS  PubMed  Google Scholar 

  • Edwards U, Rogall T, Backer H, Emde M, Buttger E (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal DNA. Nucleic Acids Res 17:7843–7853. doi:10.1093/nar/17.19.7843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jun SY, Kim JS, Choi KH, Cha J, Ha NC (2013) Structure of a novel α-amylase AmyB from Thermotoga neapolitana that produces maltose from the nonreducing end of polysaccharides. Acta Crystallogr D Biol Crystallogr 69:442–450. doi:10.1107/S0907444912049219

    Article  CAS  PubMed  Google Scholar 

  • Kanai R, Haga K, Akiba T, Yamane K, Harata K (2004) Biochemical and crystallographic analyses of maltohexaose-producing amylase from alkalophilic Bacillus sp. 707. Biochemistry 43:14047–14056. doi:10.1021/bi048489m

    Article  CAS  PubMed  Google Scholar 

  • Kashiwagi N, Miyake M, Hirose S, Sota M, Ogino C, Kondo A (2014) Cloning and starch degradation profile of maltotriose-producing amylases from Streptomyces species. Biotechnol Lett 11:2311–2317. doi:10.1007/s10529-014-1611-5

    Article  Google Scholar 

  • Kelly RM, Leemhuis H, Rozeboom HJ, van Oosterwijk N, Dijkstra BW, Dijkhuizen L (2008) Elimination of competing hydrolysis and coupling side reactions of a cyclodextrin glucanotransferase by directed evolution. Biochem J 413:517–525. doi:10.1042/BJ20080353

    Article  CAS  PubMed  Google Scholar 

  • Khamna S, Yokota A, Lumyong S (2009) Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25:649–655. doi:10.1007/s11274-008-9933-x

    Article  CAS  Google Scholar 

  • Kobayashi T, Kanai H, Hayashi T, Akiba T, Akaboshi R, Horikoshi K (1992) Haloalkaliphilic maltotriose-forming α-amylase from the archaebacterium Natronococcus sp. strain Ah-36. J Bacteriol 174:3439–3444

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kuriki T, Imanaka T (1999) The concept of the α-amylase family: structural similarity and common catalytic mechanism. J Biosci Bioeng 87:557–565. doi:10.1016/S1389-1723(99)80114-5

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Kim MJ, Baek JS, Lee HS, Cha HJ, Lee SB, Moon TW, Seo ES, Kim D, Park CS, Park KH (2003) Preparation and characterization of maltosyl-sucrose isomers produced by transglycosylation of maltogenic amylase from Bacillus stearothermophilus. J Mol Catal B Enzym 26:293–305. doi:10.1016/j.molcatb.2003.08.003

    Article  CAS  Google Scholar 

  • Lee YS, Park DJ, Choi YL (2014) Characterization of maltotriose production by hydrolyzing of soluble starch with α-amylase from Microbulbifer thermotolerans DAU221. J Microbiol Biotechnol. doi:10.1007/s00253-014-6186-5

    Google Scholar 

  • Makino T, Kanemaru M, Okuyama S, Shimizu R, Tanaka H, Mizukami H (2013) Anti-allergic effects of enzymatically modified isoquercitrin (α-oligoglucosyl quercetin 3-O-glucoside), quercetin 3-O-glucoside, α-oligoglucosyl rutin, and quercetin, when administered orally to mice. J Nat Med 67:881–886. doi:10.1007/s11418-013-0760-5

    Article  CAS  PubMed  Google Scholar 

  • Mehta D, Satyanarayana T (2013) Dimerization mediates thermo-adaptation, substrate affinity and transglycosylation in a highly thermostable maltogenic amylase of Geobacillus thermoleovorans. PLoS One 8. doi:10.1371/journal.pone.0073612

  • Morishita Y, Hasegawa K, Matsuura Y, Katsube Y, Kubota M, Sakai S (1997) Crystal structure of a maltotetraose-forming exo-amylase from Pseudomonas stutzeri. J Mol Biol 267:661–672. doi:10.1006/jmbi.1996.0887

    Article  CAS  PubMed  Google Scholar 

  • Nakakuki T, Azuma K, Kainuma K (1984) Action patterns of various exo-amylases and the anomeric configurations of their products. Carbohydr Res 128:297–310. doi:10.1006/jmbi.1996.0887

    Article  CAS  Google Scholar 

  • Nakano H, Kiso T, Okamoto K, Tomita T, Manan MBA, Kitahata S (2003) Synthesis of glycosyl glycerol by cyclodextrin glucanotransferases. J Biosci Bioeng 95:583–588. doi:10.1016/S1389-1723(03)80166-4

    Article  CAS  PubMed  Google Scholar 

  • Nasrollahi S, Golalizadeh L, Sajedi RH, Taghdir M, Asghari SM, Rassa M (2013) Substrate preference of a Geobacillus maltogenic amylase: a kinetic and thermodynamic analysis. Int J Biol Macromol 60:1–9. doi:10.1016/j.ijbiomac.2013.04.063

    Article  CAS  PubMed  Google Scholar 

  • Robyt JF, French D (1967) Multiple attack hypothesis of α-amylase action: action of porcine pancreatic, human salivary, and Aspergillus oryzae α-amylases. Arch Biochem Biophys 122:8–16. doi:10.1016/0003-9861(67)90118-X

    Article  CAS  PubMed  Google Scholar 

  • Roh HJ, Kang SC, Lee HS, Kim DK, Byun SB, Lee SJ, Park KH (2005) Transglycosylation of tagatose with maltotriose by Bacillus stearothermophilus maltogenic amylase (BSMA). Tetrahedron Asymmetry 16:77–82. doi:10.1016/j.tetasy.2004.11.060

    Article  CAS  Google Scholar 

  • Somogyi M (1952) Notes on sugar determination. J Biol Chem 195:19–23

    CAS  Google Scholar 

  • Sumitani J, Kawaguchi T, Hattori N, Murao S, Arai M (1993) Molecular cloning and expression of proteinaceous α-amylase inhibitor gene from Streptomyces nirosporeus in Escherichia coli. Biosci Biotechnol Biochem 57:1243–1248. doi:10.1271/bbb.57.1243

    Article  CAS  PubMed  Google Scholar 

  • Sumitani J, Tottori T, Kawaguchi T, Arai M (2000) New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. No. 195 α-amylase contributes to starch binding and raw starch degrading. Biochem J 350:477–484. doi:10.1042/0264-6021:3500477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takasaki Y (1985) An amylase producing maltotriose from Bacillus subtilis. Agric Biol Chem 49:1091–1097. doi:10.1080/00021369.1985.10866865

    Article  CAS  Google Scholar 

  • Takasaki Y, Kitajima M, Tsuruta T, Nonoguchi M, Hayashi S, Imada K (1991) Maltotriose-producing amylase from Microbacterium imperiale. Agric Biol Chem 55:687–692. doi:10.1080/00021369.1991.10870677

    Article  CAS  Google Scholar 

  • Takekawa S, Uozumi N, Tsukagoshi N, Udaka S (1991) Proteases involved in generation of β- and α-amylases from a large amylase precursor in Bacillus polymyxa. J Bacteriol 173:6820–6825

    PubMed Central  CAS  PubMed  Google Scholar 

  • Usui T, Murata T (1988) Enzymatic-synthesis of p-nitrophenyl α-maltopentaoside in an aqueous-methanol solvent system by maltotetraose-forming amylase: a substrate for human amylase in serum. J Biochem 103:969–972

    CAS  PubMed  Google Scholar 

  • Usui T, Murata T, Yabuuchi Y, Ogawa K (1993) Transglycosylation reaction of maltotriose-forming amylase from Streptomyces griseus. Carbohydr Res 250:57–66. doi:10.1016/0008-6215(93)84154-X

    Article  CAS  PubMed  Google Scholar 

  • van der Veen BA, Leemhuis H, Kralj S, Uitdehaag JCM, Dijkstra BW, Dijkhuizen L (2001) Hydrophobic amino acid residues in the acceptor binding site are main determinants for reaction mechanism and specificity of cyclodextrin-glycosyltransferase. J Biol Chem 276:44557–44562. doi:10.1074/jbc.M107533200

    Article  PubMed  Google Scholar 

  • Wu C, Zhou X, Xu Y, Li H, Tian Y, Xu X, Jin Z (2014) Characterization and mechanism of action of Microbacterium imperiale glucan 1,4-α-maltotriohydrolase. Carbohydr Res 384:46–50. doi:10.1016/j.carres.2013.11.014

    Article  CAS  PubMed  Google Scholar 

  • Yang CH, Liu WH (2004) Purification and properties of a maltotriose-producing α-amylase from Thermobifida fusca. Enzyme Microb Technol 35:254–260. doi:10.1016/j.enzmictec.2004.05.004

    Article  CAS  Google Scholar 

  • Yang CH, Liu WH (2007) Cloning and characterization of a maltotriose-producing α-amylase gene from Thermobifida fusca. J Ind Microbiol Biotechnol 34:325–330. doi:10.1007/s10295-006-0200-6

    Article  CAS  PubMed  Google Scholar 

  • Yoon JW, Jeon EJ, Jung IH, Min MJ, Lee HY, Kim MJ, Baek JS, Lee HS, Park CS, Oh SS, Park KH, Moon TW (2003) Maltosyl-erythritol, a major transglycosylation product of erythritol by Bacillus stearothermophilus maltogenic amylase. Biosci Biotechnol Biochem 67:525–531. doi:10.1271/bbb.67.525

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants-in-aid for scientific research (26450100) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Sumitani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 190 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamon, M., Sumitani, Ji., Tani, S. et al. Characterization and gene cloning of a maltotriose-forming exo-amylase from Kitasatospora sp. MK-1785. Appl Microbiol Biotechnol 99, 4743–4753 (2015). https://doi.org/10.1007/s00253-015-6396-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6396-5

Keywords

Navigation